انرژی هسته ای
منوی اصلی
مطالب پیشین
وصیت شهدا
وصیت شهدا
لینک دوستان
پیوندهای روزانه
نویسندگان
درباره

به وب سايت ما خوش آمدید
جستجو


آرشیو مطالب
لوگوی دوستان

ابزار و قالب وبلاگ

کاربردی

نام :
وب :
پیام :
2+2=:
(Refresh)

خبرنامه وب سایت:





آمار وب سایت:  

بازدید امروز : 20
بازدید دیروز : 145
بازدید هفته : 165
بازدید ماه : 165
بازدید کل : 6922
تعداد مطالب : 41
تعداد نظرات : 0
تعداد آنلاین : 1

ابر برچسب ها
ارسال شده در چهار شنبه 28 بهمن 1396 ساعت 21:48 توسط (( میلاد بیات ))

با توجه به حساسیت نظام جمهوری اسلامی به مخفی نگاه داشتن اسامی کارکنان، مهندسان، دانشمندان، کارشناسان و مدیران

پروژه اتمی ایران، هیچ فهرست کاملی از افراد یادشده در دست نیست.


با این همه برخی از مدیران ارشد پروژه اتمی جمهوری اسلامی در سال ۱۳۸۵

 

عبارت‌اند از :


غلامرضا آقازاده، رئیس سازمان انرژی اتمی ایران


 محمود جنتیان، معاون سازمان انرژی اتمی ایران


علی رضا حسین پور، معاون سازمان انرژی اتمی ایران


جابر شمقدریی، رئیس پژوهشگاه علوم هسته‌ای ایران


علی منوچهری، مدیرعامل تأسیسات غنی‌سازی نطنز


حسین علی میرزاییان پور، مدیرعامل یو سی اف اصفهان


مهدی اصغریان، مدیرعامل تأمین تجهیزات هسته‌ای


علی اصغر سلطانیه، نماینده دائم ایران در آژانس بین‌المللی انرژی اتمی


علی لاریجانی، سر مذاکره کننده ارشد (سابق) ایران


محمد سعیدی، معاون بین‌الملل سازمان انرژی اتمی ایران


سعید جلیلی، سر مذاکره کننده ارشد (سابق) ایران


علی شمخانی، سر مذاکره کننده ارشد ایران


  

 



برچسب ها : مدیران پروژه اتمی ایران
ارسال شده در چهار شنبه 28 بهمن 1396 ساعت 21:50 توسط (( میلاد بیات ))
ارسال شده در سه شنبه 28 بهمن 1396 ساعت 21:49 توسط (( میلاد بیات ))

 پنل مديريت

 

براي وارد شدن به پنل بر روي عكس كيليك كنيد 

 

پنل مديريت

 



برچسب ها : پنل مديريت
ارسال شده در سه شنبه 29 بهمن 1396 ساعت 7:38 توسط (( میلاد بیات ))

 بمب هيدروژنى  
بازده هيدروژنى به وسيله مقدار ليتيوم دوترايد (deuteride) و نيز مواد شكافت پذير اضافه كنترل مى شود. براى تامين نوترون هاى اضافه فرآيند هم جوشى (fusion) معمولاً اورانيوم ۲۳۸ در بخش هاى مختلف بمب به كار مى رود. اين ماده شكافت پذير اضافه (اورانيوم ۲۳۸) در عين حال تشعشعات اتمى باكيفيت بالا نيز توليد مى كند.

در باره انرژی هسته ای بیشتر بدانیم

بمب نوترونى  

بمب نوترونى يك بمب هيدروژنى است. بمب نوترونى به كلى با ساير سلاح هاى اتمى استاندارد تفاوت دارد. چرا كه اثرهاى مهلك بمب كه از تشعشعات مضر مى آيد، به خاطر نوترون هايى است كه خودش رها مى كند. اين بمب همچنين به نام «سلاح تشعشع افزوده» (enhanced- radiation weapon) شناخته مى شود.اثرات تشعشع افزوده در بمب نوترونى بدين صورت است كه آثار حرارتى و تخريبى اين بمب نسبت به ساير سلاح هاى اتمى كمتر است. به همين دليل ساختارهاى فيزيكى مثل ساختمان ها و مراكز صنعتى كمتر خسارت مى بينند و بمب بيشترين آسيب را به انسان وارد مى كند. از آنجا كه اثرات تشعشع نوترون با افزايش فاصله به شدت كاهش مى يابد اثر بمب در مناطق نزديك به آن و مراكز دور از آن به وضوح تفاوت دارد. اين ويژگى كاملاً مطلوب كشورهاى عضو پيمان آتلانتيك شمالى (ناتو) است، چرا كه آنها مى خواهند آمادگى نبرد در مناطق پرازدحام را داشته باشند درحالى كه انواع ديگر انفجارهاى هسته اى، زندگى شهرى و دارايى ها را به خطر مى اندازند بمب نوترونى فقط با زنده ها سر و كار دارد.



برچسب ها : بمب هيدروژنى بمب نوترونى
ارسال شده در سه شنبه 29 بهمن 1396 ساعت 7:33 توسط (( میلاد بیات ))

  بمب انفجار داخلى: بمب كثيف
انفجار درونى كه در واقع عكس انفجار بيرونى است ماده و انرژى را چگال و متمركز مى كند. ويرانى ساختمان بر اثر انفجار بيرونى باعث مى شود كه ساختمان روى خودش آوار شود. اصطلاحاً گفته مى شود كه «ساختمان از درون منفجر شده است.» انفجار درونى، آوار شدن از داخل است. درست مقابل انفجار بيرونى، يك كره توخالى پلوتونيوم مى تواند با چاشنى كروى انفجارى خارجى، از درون منفجر شده و به عنوان ماشه يك بمب شكافت هسته اى به كار رود. اين بمب هم به نوبه خود مى تواند يك ماشه انفجار داخلى براى يك جور هم جوشى باشد. در بحث كاويتاسيون انفجار درونى يك فرآيند مكثى است كه ذرات را مجبور به حركت به سمت داخل مى كند (نه حركت به سمت خارج كه مربوط به انفجار بيرونى است) اين حركت مركزگراى درونى، از يك مسير مستقيم به سمت مركز (مسير شعاعى) پيروى نمى كند، بلكه با چرخش روى يك مسير مارپيچى حركتش را انجام مى دهد. اين حركت چرخشى ورتكس نام دارد. در كاويتاسيون به خاطر فشار كم، حباب هاى كوچكى از بخار آب در يك سمت پروانه تشكيل مى شود. با تخريب اين حباب ها، موج هاى ناگهانى محلى شديدى به وجود مى آيد كه سر و صدا توليد مى كند و منجر به شكست محلى در سطح پروانه مى شود. ادامه اين روند سايش ماده را به دنبال دارد. مشخصه اصلى ورتكس اين است كه خارج آن كند و مركز آن تند حركت مى كند. در ورتكس، آب «از درون منفجر مى شود» ذرات معلقى كه از آب سنگين ترند به مركز جريان كشيده مى شوند، مقاومت اصطكاكى كاهش مى يابد و سرعت جريان زياد مى شود.

در باره انرژی هسته ای بیشتر بدانیم

مراحل انفجار داخلى  

۱ ماده منفجر ه اى كه ماده شكافت پذير را در برگرفته است، مشتعل مى شود. ۲ يك موج ناگهانى تراكمى به سمت داخل شروع به حركت مى كند. سرعت اين موج ناگهانى از سرعت صوت بيشتر است و سبب افزايش قابل توجه شار مى رود. موج در يك لحظه به تمام نقاط روى سطح كروى ماده شكافت پذير در هسته بمب حمله مى كند، فرآيند تراكم آغاز مى شود. ۳ با افزايش چگالى هسته، جرم به حالت بحرانى و سپس فوق بحرانى مى رود كه در آن زنجيره واكنش ها به صورت نهايى زياد مى شود. ۴ اكنون پخش شدن چاشنى به رها شدن نوترون هاى زياد منجر مى شود. به همين دليل خيلى از توليدات اوليه باى پس مى شوند.۵ زنجيره واكنش ها همچنان ادامه مى يابد. تا زمانى كه انرژى توليد شده در درون بمب به قدرى بزرگ شود كه فشار درونى (ناشى از انرژى شكافت) به مقدارى بيش از فشار انفجار داخلى و ناشى از موج ناگهانى برسد.۶ با از هم جدا كردن بمب، انرژى منتشر شده در فرآيند شكافت، به اطراف انتقال مى يابد.

در باره انرژی هسته ای بیشتر بدانیم



برچسب ها : بمب انفجار داخلى: بمب كثيف
ارسال شده در سه شنبه 28 بهمن 1396 ساعت 21:32 توسط (( میلاد بیات ))

در باره انرژی هسته ای بیشتر بدانیم

«مرد چاق»(Fat man) : بمب انفجار درونى

شكافت خودبه خودى پلوتونيوم ۲۳۹ آنقدر سريع است كه بمب تفنگى (پسربچه) نمى تواند دو توده پلوتونيوم را در زمانى كوتاه تر از حد فاصل شكافت ها كنار هم نگه دارد. بنابراين براى پلوتونيوم بايد نوع ديگرى از بمب طراحى شود. قبل از سواركردن بمب، چند نوترون سرگردان رها مى شوند تا زنجيره واكنش پيش رس را آغاز كنند. اين زنجيره موجب كاهش عظيم انرژى منتشر شده مى شود. «ست ندرمى ير» (دانشمندى از لس آلاموس) ايده استفاده از چاشنى هاى انفجارى را براى كمپرس بسيار سريع كره پلوتونيوم مطرح كرد و بسط داد. با اين روش كره پلوتونيوم به چگالى مناسب بحرانى مى رسد و انفجار هسته اى رخ مى دهد.

در باره انرژی هسته ای بیشتر بدانیم

1- :AN 219 فيوز تخريب
۲- :Archie آنتن رادار
۳- صفحه باترى ها
۴- واحد :Xسيستم جرقه زن كنار چاشنى
۵- لولا براى ثابت نگه داشتن دو بخش بيفوى بمب
۶- لنز پنج ضلعى با قابليت انفجار بالا
۷- لنز شش ضلعى با قابليت انفجار زياد
۸- چتر نجات كاليفرنيا دنباله (آلومينيوم)
۹- حفاظ دور، قطر داخلى cm ۱۴۰
۱۰- مخروط هايى كه كل كره را در بر مى گيرند
۱۱- لنزهاى انفجارى
۱۲- ماده هسته اى
۱۳- صفحه رادارها، سوئيچ هاى هوا و تايمرها
۱۴- جمع كننده لوله هوا



برچسب ها : «مرد چاق»(Fat man) : بمب انفجار درونى
ارسال شده در سه شنبه 28 بهمن 1396 ساعت 21:31 توسط (( میلاد بیات ))

 «پسربچه»:(Little boy) يك بمب شليكى
طرح «پسربچه» شامل تفنگى است كه توده اى از اورانيوم ۲۳۵ را به سمت توده ديگرى از اين ايزوتوپ شليك مى كند. به اين ترتيب يك جرم فوق بحرانى توليد مى شود. نكته اساسى كه حتماً بايد رعايت شود اين است كه اين توده ها بايد در زمانى كوتاه تر از حدفاصل بين شكافت هاى خود به خودى در كنار هم نگه داشته شوند. به محض اينكه دو توده اورانيوم در كنار هم قرار گرفتند، ناگهان چاشنى توده اى از نوترون ها را توليد مى كند و زنجيره واكنش ها آغاز مى شود. با ادامه اين زنجيره، انرژى مدام افزايش مى يابد تا بمب به سادگى و خودبه خود منفجر شود.

در باره انرژی هسته ای بیشتر بدانیم

1- در دنباله پليسه بردارى
۲- مخروط دم
۳- لوله هاى ورود هوا
۴- چاشنى فشار هوا
۵- محفظه پوشش محافظ سربى
۶- بازوى چاشنى
۷- سرانفجارى
۸- چاشنى انفجارى معمول
۹- اورانيوم ۲۳۵ (گلوله)
۱۰- سيلندر توپ
۱۱- اورانيوم ۲۳۵ (هدف) با مخزن
(منعكس كننده نوترون درست اين بالا است)
۱۲- ميله هاى كنترل فاصله
۱۳- فيوزها



برچسب ها : «پسربچه»:(Little boy) يك بمب شليكى
ارسال شده در سه شنبه 28 بهمن 1396 ساعت 21:30 توسط (( میلاد بیات ))

 بمب هاى هسته اى  

•چرا اورانيوم و پلوتونيوم؟  

ايزوتوپ معمول اورانيوم (اورانيوم ۲۳۸) براى ساخت سلاح اتمى مناسب نيست. چرا كه با شليك نوترونى به هسته اين ايزوتوپ، احتمال به دام افتادن نوترون و تشكيل اورانيوم ۲۳۹ از احتمال شكافت هسته اى بسيار بيشتر است. درحالى كه در اورانيوم ۲۳۵ امكان شكافت هسته اى بيشتر است. اما فقط ۷/۰ درصد اورانيوم موجود در طبيعت، ايزوتوپ ۲۳۵ است. به همين خاطر براى تهيه مقدار مورد نياز اورانيوم ۲۳۵ براى ساخت بمب، به مقدار زيادى از اورانيوم طبيعى نياز است. در عين حال ايزوتوپ هاى ۲۳۵ و ۲۳۹ اورانيوم به روش هاى شيميايى قابل جداسازى نيستند؛ چرا كه از لحاظ شيميايى يكسانند. بنابراين دانشمندان پروژه منهتن قبل از ساختن بمب بايد مسئله ديگرى را حل مى كردند؛ جداسازى ايزوتوپ هاى اورانيوم به روش هاى غيرشيميايى. پژوهش ها همچنين نشان مى داد كه پلوتونيوم ۲۳۹ قابليت شكافت هسته اى بالايى دارد. گرچه پلوتونيوم ۲۳۹ يك عنصر طبيعى نيست و بايد ساخته شود. رآكتورهاى هنفورد در واشينگتن به همين منظور ساخته شده اند.

در باره انرژی هسته ای بیشتر بدانیم



برچسب ها : بمب هاى هسته اى
ارسال شده در سه شنبه 28 بهمن 1396 ساعت 21:29 توسط (( میلاد بیات ))

 Gaseous Diffusion
در روش Gaseous Diffusion، گاز هگزافلوراید اورانیوم (UF6) را با سرعت از صفحات خاصی که حالت ----- دارند عبور داده می شود و طی آن این صفحات می توانند به دلیل داشتن منافذ و خلل و فرج زیاد تا حدی می توانند اوانیوم 235 را از 238 جدا کنند. (به شکل بالا دقت کنید)
در این روش با تکرار استفاده از این صفحات ----- مانند، بصورت آبشاری (Cascade)، میزان اورانیوم 235 را به مقدار دلخواه بالا می بردند. این روش اولین راهکارهای صنعتی برای غنی سازی اورانیوم بود که کابرد عملی پیدا کرد.
Gaseous Diffusion از جمله تکنولوژی هایی بود که ایالات متحده طی جنگ جهانی دوم در پروژه ای بنام منهتن (Manhattan) برای ساخت بمب هسته ای، با کمک انگلیس و کانادا به آن دست پیدا کرد.
نمونه ای از سانتریفیوژهای گازی آبشاری که برای غنی سازی اورانیوم از آنها استفاده می شود. Hyper-Centrifuge
اما در روش استفاده از سانتریفیوژ برای غنی سازی اورانیوم، تعداد بسیار زیادی از این دستگاهها بصورت سری و موازی بکار می برند تا با کمک آن بتوانند غلظت اورانیوم 235 را افزایش دهند.
گاز هگزافلوراید اورانیوم (UF6) در داخل سیلندرهای سانتریفیوژ تزریق می شود و با سرعت زیاد به گردش در آورده می گردد. گردش سریع سیلندر، نیروی گریز از مرکز بسیار قوی ای تولید می کند و طی آن مولکولهای سنگین تر (آنهایی که شامل ایزوتوپ اورانیوم 238 هستند) از مرکز محور گردش دور تر می گردند و برعکس آنها که مولکول های سبک تری دارند (حاوی ایزوتوپ اورانیوم 235) بیشتر حول محور سانتریفیوژ قرار می گیرند.
در این هنگام با استفاده از روشهای خاص گازی که حول محور جمع شده است جمع آوری شده به مرحله دیگر یعنی دستگاه سانتریفیوژ بعدی هدایت می گردد. میزان گاز هگزافلوراید اورانیوم شامل اورانیوم 235 ای که در این روش از یک واحد جداسازی بدست می آید به مراتب بیشتر از مقداری است که در روش قبلی (Gaseous Diffusion) بدست می آید، به همین علت است که امروزه در بیشتر نقاط جهان برای غنی سازی اورانیوم از این روش استفاده می کنند.
بزرگترین دستگاههای آبشاری سانتریفیوژ در کشورهایی مانند فرانسه، آلمان، انگلستان و چین در حال غنی سازی اورانیوم هستد. این کشورها علاوه بر مصرف داخلی به صادرات اورانیوم غنی شده نیز می پردازند. کشور ژاپن هم دارای دستگاههای بزرگ سانتریفیوژ است اما تنها برای مصرف داخلی اورانیوم غنی شده تولید می کند.



برچسب ها : Gaseous Diffusion
ارسال شده در سه شنبه 28 بهمن 1396 ساعت 21:28 توسط (( میلاد بیات ))

 غنی سازی اورانیوم
سانتریفیوژ دستگاهی است که برای جدا سازی مواد از یکدیگر بر اساس وزن آنها استفاده می شود. این دستگاه مواد را با سرعت زیاد حول یک محور به گردش در می آورد و مواد متناسب با وزنی که دارند از محور فاصله می گیرند.
در واقع در این روش برای جدا سازی مواد از یکدیگر از شتاب ناشی از نیروی گریز از مرکز استفاده می گردد، کاربرد عمومی این دستگاه برای جداسازی مایع از مایع و یا مایع از جامد است.
سانتریفیوژ هایی که برای غنی سازی اورانیوم استفاده می شود حالت خاصی دارند که برای گاز تهیه شده اند که به آنها Hyper-Centrifuge گفته می شود. پیش از آنکه دانشمندان از این روش برای غنی سازی اورانیوم استفاده کنند از تکنولوژی خاصی بنام Gaseous Diffusion به معنی پخش و توزیع گازی استفاده می کردند.

در باره انرژی هسته ای بیشتر بدانیم



برچسب ها : غنی سازی اورانیوم
ارسال شده در سه شنبه 28 بهمن 1396 ساعت 21:28 توسط (( میلاد بیات ))

 بمب اورانيومی:  
هدف طراحان بمبهای اتمی ايجاد يک جرم فوق بحرانی ( از اورانيوم يا پلوتونيوم) است که بتواند طی يک واکنش زنجيره ای مداوم و کنترل نشده، مقادير متنابهی انرژی حرارتی آزاد کند.
يکی از ساده ترين شيوه های ساخت بمب اتمی استفاده از طرحی موسوم به "تفنگی" است که در آن گلوله کوچکی از اورانيوم که از جرم بحرانی کمتر بوده به سمت جرم بزرگتری از اورانيوم شليک ميشود بگونه ای که در اثر برخورد اين دو قطعه، جرم کلی فوق بحرانی شده و باعث آغاز واکنش زنجيره ای و انفجار هسته ای ميشود.
کل اين فرايند در کسر کوچکی از ثانيه رخ ميدهد.
جهت توليد سوخت مورد نياز بمب اتمی، هگزا فلوئوريد اورانيوم غنی شده را ابتدا به اکسيد اورانيوم و سپس به شمش فلزی اورانيوم تبديل ميکنند. انجام اين کار از طريق فرايندهای شيميائی و مهندسی نسبتا ساده ای امکان پذير است.

در باره انرژی هسته ای بیشتر بدانیم

درت انفجار يک بمب اتمی معمولی حداکثر ۵۰ کيلو تن است، اما با با کمک روش خاصی که متکی بر مهار خصوصيات جوش يا گداز هسته ای است ميتوان قدرت بمب را افزايش داد.
در فرايند گداز هسته ای ، هسته های ايزوتوپهای هيدروژن به يکديگر جوش خورده و هسته اتم هليوم را ايجاد ميکنند. اين فرايند هنگامی رخ ميدهد که هسته های اتمهای هيدروژن در معرض گرما و فشار شديد قرار بگيرند. انفجار بمب اتمی گرما و فشار شديد مورد نياز برای آغاز اين فرايند را فراهم ميکند.
طی فرايند گداز هسته ای نوترونهای بيشتری رها ميشوند که با تغذيه واکنش زنجيره ای، انفجار شديدتری را بدنبال می آورند. اينگونه بمبهای اتمی تقويت شده به بمبهای هيدروژنی يا بمبهای اتمی حرارتی موسومند.



برچسب ها : بمب اورانيومی
ارسال شده در سه شنبه 28 بهمن 1396 ساعت 21:26 توسط (( میلاد بیات ))

بمب پلوتونيومی:  

استفاده از پلوتونيوم به جای اورانيوم در ساخت بمب اتمی مزايای بسياری دارد. تنها چهار کيلوگرم پلوتونيوم برای ساخت بمب اتمی با قدرت انفجار ۲۰ کيلو تن کافی است. در عين حال با تاسيسات بازفراوری نسبتا کوچکی ميتوان چيزی حدود ۱۲ کيلوگرم پلوتونيوم در سال توليد کرد.

بمب پلوتونيومی  

در باره انرژی هسته ای بیشتر بدانیم

1- منبع يا مولد نوترونی
2- هسته پلوتونيومی
3- پوسته منعکس کننده (بريليوم)
4- ماده منفجره پرقدرت
5- چاشنی انفجاری
کلاهک هسته ای شامل گوی پلوتونيومی است که اطراف آنرا پوسته ای موسوم به منعکس کننده نوترونی فرا گرفته است. اين پوسته که معمولا از ترکيب بريليوم و پلونيوم ساخته ميشود، نوترونهای آزادی را که از فرايند شکافت هسته ای به بيرون ميگريزند، به داخل اين فرايند بازمی تاباند.
استفاده از منعکس کننده نوترونی عملا جرم بحرانی را کاهش ميدهد و باعث ميشود که برای ايجاد واکنش زنجيره ای مداوم به پلوتونيوم کمتری نياز باشد.
برای کشور يا گروه تروريستی که بخواهد بمب اتمی بسازد، توليد پلوتونيوم با کمک راکتورهای هسته ای غير نظامی از تهيه اورانيوم غنی شده آسانتر خواهد بود. کارشناسان معتقدند که دانش و فناوری لازم برای طراحی و ساخت يک بمب پلوتونيومی ابتدائی، از دانش و فنآوری که حمله کنندگان با گاز اعصاب به شبکه متروی توکيو در سال ۱۹۹۵ در اختيار داشتند پيشرفته تر نيست.
چنين بمب پلوتونيومی ميتواند با قدرتی معادل ۱۰۰ تن تی ان تی منفجر شود، يعنی ۲۰ مرتبه قويتر از قدرتمندترين بمبگزاری تروريستی که تا کنون در جهان رخ داده است.


برچسب ها : بمب پلوتونيومی
ارسال شده در سه شنبه 28 بهمن 1396 ساعت 21:24 توسط (( میلاد بیات ))

 بازفراوری:  
برای بازيافت اورانيوم از سوخت هسته ای مصرف شده در راکتور از عمليات شيميايی موسوم به بازفراوری استفاده ميشود. در اين عمليات، ابتدا پوسته فلزی ميله های سوخت مصرف شده را جدا ميسازند و سپس آنها را در داخل اسيد نيتريک داغ حل ميکنند.

در باره انرژی هسته ای بیشتر بدانیم

در نتيجه اين عمليات، ۱% پلوتونيوم ، ۳% مواد زائد به شدت راديوراديو اکتيو و ۹۶% اورانيوم بدست می آيد که دوباره ميتوان آنرا در راکتور به مصرف رساند.
راکتورهای نظامی اين کار را بطور بسيار موثرتری انجام ميدهند. راکتور و تاسيسات باز فراوری مورد نياز برای توليد پلوتونيوم را ميتوان بطور پنهانی در داخل ساختمانهای معمولی جاسازی کرد. به همين دليل، توليد پلوتونيوم به اين طريق، برای هر کشوری که بخواهد بطور مخفيانه تسليحات اتمی توليد کند گزينه جذابی خواهد بود.



برچسب ها : بازفراوری
ارسال شده در سه شنبه 28 بهمن 1396 ساعت 21:24 توسط (( میلاد بیات ))

 راکتور هسته ای:  
راکتور هسته ای وسيله ايست که در آن فرايند شکافت هسته ای بصورت کنترل شده انجام ميگيرد. انرژی حرارتی بدست آمده از اين طريق را می توان برای بخار کردن آب و به گردش درآوردن توربين های بخار ژنراتورهای الکتريکی مورد استفاده قرار داد.
اورانيوم غنی شده ، معمولا به صورت قرصهائی که سطح مقطعشان به اندازه يک سکه معمولی و ضخامتشان در حدود دو و نيم سانتيمتر است در راکتورها به مصرف ميرسند. اين قرصها روی هم قرار داده شده و ميله هايی را تشکيل ميدهند که به ميله سوخت موسوم است. ميله های سوخت سپس در بسته های چندتائی دسته بندی شده و تحت فشار و در محيطی عايقبندی شده نگهداری ميشوند.
در بسياری از نيروگاهها برای جلوگيری از گرم شدن بسته های سوخت در داخل راکتور، اين بسته ها را داخل آب سرد فرو می برند. در نيروگاههای ديگر برای خنک نگه داشتن هسته راکتور ، يعنی جائی که فرايند شکافت هسته ای در آن رخ ميدهد ، از فلز مايع (سديم) يا گاز دی اکسيد کربن استفاده می شود.

در باره انرژی هسته ای بیشتر بدانیم

1- هسته راکتور
2-پمپ خنک کننده
3- ميله های سوخت
4- مولد بخار
5- هدايت بخار به داخل توربين مولد برق
برای توليد انرژی گرمائی از طريق فرايند شکافت هسته ای ، اورانيومی که در هسته راکتور قرار داده ميشود بايد از جرم بحرانی بيشتر (فوق بحرانی) باشد. يعنی اورانيوم مورد استفاده بايد به حدی غنی شده باشد که امکان آغاز يک واکنش زنجيره ای مداوم وجود داشته باشد.
برای تنظيم و کنترل فرايند شکافت هسته ای در يک راکتور از ميله های کنترلی که معمولا از جنس کادميوم است استفاده ميشود. اين ميله ها با جذب نوترونهای آزاد در داخل راکتور از تسريع واکنشهای زنجيره ای جلوگيری ميکند. زيرا با کاهش تعداد نوترونها ، تعداد واکنشهای زنجيره ای نيز کاهش ميابد.
حدودا ۴۰۰ نيروگاه هسته ای در سرتاسر جهان فعال هستند که تقريبا ۱۷ درصد کل برق مصرفی در جهان را تامين ميکنند. از جمله کاربردهای ديگر راکتورهای هسته ای، توليد نيروی محرکه لازم برای جابجايی ناوها و زيردريايی های اتمی است.



برچسب ها : راکتور هسته ای
ارسال شده در سه شنبه 28 بهمن 1396 ساعت 21:23 توسط (( میلاد بیات ))

 غنی سازی:  
هدف از غنی سازی توليد اورانيومی است که دارای درصد بالايی از ايزوتوپ U۲۳۵ باشد.
اورانيوم مورد استفاده در راکتورهای اتمی بايد به حدی غنی شود که حاوی ۲ تا ۳ درصد اورانيوم ۲۳۵ باشد، در حالی که اورانيومی که در ساخت بمب اتمی بکار ميرود حداقل بايد حاوی ۹۰ درصد اورانيوم ۲۳۵ باشد.
يکی از روشهای معمول غنی سازی استفاده از دستگاههای سانتريفوژ گاز است.
سانتريفوژ از اتاقکی سيلندری شکل تشکيل شده که با سرعت بسيار زياد حول محور خود می چرخد. هنگامی که گاز هگزا فلوئوريد اورانيوم به داخل اين سيلندر دميده شود نيروی گريز از مرکز ناشی از چرخش آن باعث ميشود که مولکولهای سبکتری که حاوی اورانيوم ۲۳۵ است در مرکز سيلندر متمرکز شوند و مولکولهای سنگينتری که حاوی اورانيوم ۲۳۸ هستند در پايين سيلندر انباشته شوند.

در باره انرژی هسته ای بیشتر بدانیم

کيک زرد دارای خاصيت راديو اکتيويته است و ۶۰ تا ۷۰ درصد آنرا اورانيوم تشکيل ميدهد
هگزافلوئوريد اورانيوم که در صنعت با نام ساده هگز شناخته ميشود ماده شيميائی خورنده ايست که بايد آنرا با احتياط نگهداری و جابجا کرد. به همين دليل پمپها و لوله هائی که برای انتقال اين گاز در تاسيسات فراوری اورانيوم بکار ميروند بايد از آلومينيوم و آلياژهای نيکل ساخته شوند. همچنين به منظور پيشگيری از هرگونه واکنش شيميايی برگشت ناپذير
ورانيوم ۲۳۵ غنی شده ای که از اين طريق بدست می آيد سپس به داخلاخل سانتريفوژ ديگری دميده ميشود تا درجه خلوص آن باز هم بالاتر رود. اين عمل بارها و بارها توسط سانتريفوژهای متعددی که بطور سری به يکديگر متصل ميشوند تکرار ميشود تا جايی که اورانيوم ۲۳۵ با درصد خلوص مورد نياز بدست آيد.
آنچه که پس از جدا سازی اورانيوم ۲۳۵ باقی ميماند به نام اورانيوم خالی يا فقير شده شناخته ميشود که اساسا از اورانيوم ۲۳۸ تشکيل يافته است. اورانيوم خالی فلز بسيار سنگينی است که اندکی خاصيت راديو اکتيويته دارد و از آن برای ساخت گلوله های توپ ضد زره پوش و اجزای برخی جنگ افزار های ديگر از جمله منعکس کننده نوترونی در بمب اتمی استفاده ميشود.
يک شيوه ديگر غنی سازی روشی موسوم به ديفيوژن يا روش انتشاری است.
دراين روش گاز هگزافلوئوريد اورانيوم به داخل ستونهايی که جدار آنها از اجسام متخلخل تشکيل شده دميده ميشود. سوراخهای موجود در جسم متخلخل بايد قدری از قطر مولکول هگزافلوئوريد اورانيوم بزرگتر باشد.
در نتيجه اين کار مولکولهای سبکتر حاوی اورانيوم ۲۳۵ با سرعت بيشتری در اين ستونها منتشر شده و تفکيک ميشوند. اين روش غنی سازی نيز بايد مانند روش سانتريفوژ بارها و باره تکرار شود.



برچسب ها : غنی سازی
ارسال شده در سه شنبه 28 بهمن 1396 ساعت 21:22 توسط (( میلاد بیات ))

 کشورهای اصلی توليد کننده اورانيوم  
استراليا
چين
کانادا
قزاقستان
ناميبيا
نيجر
روسيه
ازبکستان
برای بدست آوردن بالاترين بازدهی در فرايند زنجيره ای شکافت هسته بايد از اورانيوم ۲۳۵ استفاده کرد که هسته آن به سادگی شکافته ميشود. هنگامی که اين نوع اورانيوم به اتمهای کوچکتر تجزيه ميشود علاوه بر آزاد شدن مقداری انرژی حرارتی دو يا سه نوترون جديد نيز رها ميشود که در صورت برخورد با اتمهای جديد اورانيوم بازهم انرژی حرارتی بيشتر و نوترونهای جديد آزاد ميشود.
اما بدليل "نيمه عمر" کوتاه اورانيوم ۲۳۵ و فروپاشی سريع آن، اين ايزوتوپ در طبيعت بسيار نادر است بطوری که از هر ۱۰۰۰ اتم اورانيوم موجود در طبيعت تنها هفت اتم از نوع U۲۳۵ بوده و مابقی از نوع سنگينتر U۲۳۸ است.
فراوری:
سنگ معدن اورانيوم بعد از استخراج، در آسيابهائی خرد و به گردی نرم تبديل ميشود. گرد بدست آمده سپس در يک فرايند شيميائی به ماده جامد زرد رنگی تبديل ميشود که به کيک زرد موسوم است. کيک زرد دارای خاصيت راديو اکتيويته است و ۶۰ تا ۷۰ درصد آنرا اورانيوم تشکيل ميدهد.
دانشمندان هسته ای برای دست يابی هرچه بيشتر به ايزوتوپ نادر U۲۳۵ که در توليد انرژی هسته ای نقشی کليدی دارد، از روشی موسوم به غنی سازی استفاده می کنند. برای اين کار، دانشمندان ابتدا کيک زرد را طی فرايندی شيميائی به ماده جامدی به نام هگزافلوئوريد اورانيوم تبديل ميکنند که بعد از حرارت داده شدن در دمای حدود ۶۴ درجه سانتيگراد به گاز تبديل ميشود.

در باره انرژی هسته ای بیشتر بدانیم

بايد اين گاز را دور از معرض روغن و مواد چرب کننده ديگر نگهداری کرد.



برچسب ها : کشورهای اصلی توليد کننده اورانيوم
ارسال شده در سه شنبه 28 بهمن 1396 ساعت 21:22 توسط (( میلاد بیات ))

 استخراج اورانيوم از معدن  
اورانيوم که ماده خام اصلی مورد نياز برای توليد انرژی در برنامه های صلح آميز يا نظامی هسته ای است، از طريق استخراج از معادن زيرزمينی يا سر باز بدست می آيد. اگر چه اين عنصر بطور طبيعی در سرتاسر جهان يافت ميشود اما تنها حجم کوچکی از آن بصورت متراکم در معادن موجود است.
هنگامی که هسته اتم اورانيوم در يک واکنش زنجيره ای شکافته شود مقداری انرژی آزاد خواهد شد.
برای شکافت هسته اتم اورانيوم، يک نوترون به هسته آن شليک ميشود و در نتيجه اين فرايند، اتم مذکور به دو اتم کوچکتر تجزيه شده و تعدادی نوترون جديد نيز آزاد ميشود که هرکدام به نوبه خود ميتوانند هسته های جديدی را در يک فرايند زنجيره ای تجزيه کنند.

در باره انرژی هسته ای بیشتر بدانیم

جموع جرم اتمهای کوچکتری که از تجزيه اتم اورانيوم بدست می آيد ازز کل جرم اوليه اين اتم کمتر است و اين بدان معناست که مقداری از جرم اوليه که ظاهرا ناپديد شده در واقع به انرژی تبديل شده است، و اين انرژی با استفاده از رابطه E=MC۲ يعنی رابطه جرم و انرژی که آلبرت اينشتين نخستين بار آنرا کشف کرد قابل محاسبه است.
اورانيوم به صورت دو ايزوتوپ مختلف در طبيعت يافت ميشود. يعنی اورانيوم U۲۳۵ يا U۲۳۸ که هر دو دارای تعداد پروتون يکسانی بوده و تنها تفاوتشان در سه نوترون اضافه ای است که در هسته U۲۳۸ وجود دارد. اعداد ۲۳۵ و ۲۳۸ بيانگر مجموع تعداد پروتونها و نوترونها در هسته هر کدام از اين دو ايزوتوپ است.




برچسب ها : استخراج اورانيوم از معدن
ارسال شده در سه شنبه 28 بهمن 1396 ساعت 21:21 توسط (( میلاد بیات ))

 غنی سازی اورانيم  
سنگ معدن اورانيوم موجود در طبيعت از دو ايزوتوپ ۲۳۵ به مقدار ۷/۰ درصد و اورانيوم ۲۳۸ به مقدار ۳/۹۹ درصد تشكيل شده است. سنگ معدن را ابتدا در اسيد حل كرده و بعد از تخليص فلز، اورانيوم را به صورت تركيب با اتم فلئور (F) و به صورت مولكول اورانيوم هكزا فلورايد UF6 تبديل مي كنند كه به حالت گازي است. سرعت متوسط مولكول هاي گازي با جرم مولكولي گاز نسبت عكس دارد اين پديده را گراهان در سال ۱۸۶۴ كشف كرد. از اين پديده كه به نام ديفوزيون گازي مشهور است براي غني سازي اورانيوم استفاده مي كنند.در عمل اورانيوم هكزا فلورايد طبيعي گازي شكل را از ستون هايي كه جدار آنها از اجسام متخلخل (خلل و فرج دار) درست شده است عبور مي دهند. منافذ موجود در جسم متخلخل بايد قدري بيشتر از شعاع اتمي يعني در حدود ۵/۲ انگشترم (۰۰۰۰۰۰۰۲۵/۰ سانتيمتر) باشد. ضريب جداسازي متناسب با اختلاف جرم مولكول ها است.روش غني سازي اورانيوم تقريباً مطابق همين اصولي است كه در اينجا گفته شد. با وجود اين مي توان به خوبي حدس زد كه پرخرج ترين مرحله تهيه سوخت اتمي همين مرحله غني سازي ايزوتوپ ها است زيرا از هر هزاران كيلو سنگ معدن اورانيوم ۱۴۰ كيلوگرم اورانيوم طبيعي به دست مي آيد كه فقط يك كيلوگرم اورانيوم ۲۳۵ خالص در آن وجود دارد. براي تهيه و تغليظ اورانيوم تا حد ۵ درصد حداقل ۲۰۰۰ برج از اجسام خلل و فرج دار با ابعاد نسبتاً بزرگ و پي درپي لازم است تا نسبت ايزوتوپ ها تا از برخي به برج ديگر به مقدار ۰۱/۰ درصد تغيير پيدا كند. در نهايت موقعي كه نسبت اورانيوم ۲۳۵ به اورانيوم ۲۳۸ به ۵ درصد رسيد بايد براي تخليص كامل از سانتريفوژهاي بسيار قوي استفاده نمود. براي ساختن نيروگاه اتمي، اورانيوم طبيعي و يا اورانيوم غني شده بين ۱ تا ۵ درصد كافي است. ولي براي تهيه بمب اتمي حداقل ۵ تا ۶ كيلوگرم اورانيوم ۲۳۵ صددرصد خالص نياز است. عملا در صنايع نظامي از اين روش استفاده نمي شود و بمب هاي اتمي را از پلوتونيوم ۲۳۹ كه سنتز و تخليص شيميايي آن بسيار ساده تر است تهيه مي كنند. عنصر اخير را در نيروگاه هاي بسيار قوي مي سازند كه تعداد نوترون هاي موجود در آنها از صدها هزار ميليارد نوترون در ثانيه در سانتيمتر مربع تجاوز مي كند. عملاً كليه بمب هاي اتمي موجود در زراد خانه هاي جهان از اين عنصر درست مي شود.روش ساخت اين عنصر در داخل نيروگاه هاي اتمي به صورت زير است: ايزوتوپ هاي اورانيوم ۲۳۸ شكست پذير نيستند ولي جاذب نوترون كم انرژي (نوترون حرارتي هستند. تعدادي از نوترون هاي حاصل از شكست اورانيوم ۲۳۵ را جذب مي كنند و تبديل به اورانيوم ۲۳۹ مي شوند. اين ايزوتوپ از اورانيوم بسيار ناپايدار است و در كمتر از ده ساعت تمام اتم هاي به وجود آمده تخريب مي شوند. در درون هسته پايدار اورانيوم ۲۳۹ يكي از نوترون ها خودبه خود به پروتون و يك الكترون تبديل مي شود.بنابراين تعداد پروتون ها يكي اضافه شده و عنصر جديد را كه ۹۳ پروتون دارد نپتونيم مي نامند كه اين عنصر نيز ناپايدار است و يكي از نوترون هاي آن خود به خود به پروتون تبديل مي شود و در نتيجه به تعداد پروتون ها يكي اضافه شده و عنصر جديد كه ۹۴ پروتون دارد را پلوتونيم مي نامند. اين تجربه طي چندين روز انجام مي گيرد.
چرخه سوخت هسته ای از استخراج اورانيوم تا توليد انرژی

در باره انرژی هسته ای بیشتر بدانیم

 


برچسب ها : غنی سازی اورانيم
ارسال شده در سه شنبه 28 بهمن 1396 ساعت 21:20 توسط (( میلاد بیات ))

 ساختار نيروگاه اتمي  
به طور خلاصه چگونگي كاركرد نيروگاه هاي اتمي را بيان كرده و ساختمان دروني آنها را مورد بررسي قرار مي دهيم.
طي سال هاي گذشته اغلب كشورها به استفاده از اين نوع انرژي هسته اي تمايل داشتند و حتي دولت ايران ۱۵ نيروگاه اتمي به كشورهاي آمريكا، فرانسه و آلمان سفارش داده بود. ولي خوشبختانه بعد از وقوع دو حادثه مهم تري ميل آيلند (Three Mile Island) در ۲۸ مارس ۱۹۷۹ و فاجعه چرنوبيل (Tchernobyl) در روسيه در ۲۶ آوريل ۱۹۸۶، نظر افكار عمومي نسبت به كاربرد اتم براي توليد انرژي تغيير كرد و ترس و وحشت از جنگ اتمي و به خصوص امكان تهيه بمب اتمي در جهان سوم، كشورهاي غربي را موقتاً مجبور به تجديدنظر در برنامه هاي اتمي خود كرد.
نيروگاه اتمي در واقع يك بمب اتمي است كه به كمك ميله هاي مهاركننده و خروج دماي دروني به وسيله مواد خنك كننده مثل آب و گاز، تحت كنترل درآمده است. اگر روزي اين ميله ها و يا پمپ هاي انتقال دهنده مواد خنك كننده وظيفه خود را درست انجام ندهند، سوانح متعددي به وجود مي آيد و حتي ممكن است نيروگاه نيز منفجر شود، مانند فاجعه نيروگاه چرنوبيل شوروي. يك نيروگاه اتمي متشكل از مواد مختلفي است كه همه آنها نقش اساسي و مهم در تعادل و ادامه حيات آن را دارند. اين مواد عبارت اند از:
۱ _ ماده سوخت متشكل از اورانيوم طبيعي، اورانيوم غني شده، اورانيوم و پلوتونيم است.
عمل سوختن اورانيوم در داخل نيروگاه اتمي متفاوت از سوختن زغال يا هر نوع سوخت فسيلي ديگر است. در اين پديده با ورود يك نوترون كم انرژي به داخل هسته ايزوتوپ اورانيوم ۲۳۵ عمل شكست انجام مي گيرد و انرژي فراواني توليد مي كند. بعد از ورود نوترون به درون هسته اتم، ناپايداري در هسته به وجود آمده و بعد از لحظه بسيار كوتاهي هسته اتم شكسته شده و تبديل به دوتكه شكست و تعدادي نوترون مي شود. تعداد متوسط نوترون ها به ازاي هر ۱۰۰ اتم شكسته شده ۲۴۷ عدد است و اين نوترون ها اتم هاي ديگر را مي شكنند و اگر كنترلي در مهار كردن تعداد آنها نباشد واكنش شكست در داخل توده اورانيوم به صورت زنجيره اي انجام مي شود كه در زماني بسيار كوتاه منجر به انفجار شديدي خواهد شد.
در واقع ورود نوترون به درون هسته اتم اورانيوم و شكسته شدن آن توام با انتشار انرژي معادل با ۲۰۰ ميليون الكترون ولت است اين مقدار انرژي در سطح اتمي بسيار ناچيز ولي در مورد يك گرم از اورانيوم در حدود صدها هزار مگاوات است. كه اگر به صورت زنجيره اي انجام شود، در كمتر از هزارم ثانيه مشابه بمب اتمي عمل خواهد كرد.
اما اگر تعداد شكست ها را در توده اورانيوم و طي زمان محدود كرده به نحوي كه به ازاي هر شكست، اتم بعدي شكست حاصل كند شرايط يك نيروگاه اتمي به وجود مي آيد. به عنوان مثال نيروگاهي كه داراي ۱۰ تن اورانيوم طبيعي است قدرتي معادل با ۱۰۰ مگاوات خواهد داشت و به طور متوسط ۱۰۵ گرم اورانيوم ۲۳۵ در روز در اين نيروگاه شكسته مي شود و همان طور كه قبلاً گفته شد در اثر جذب نوترون به وسيله ايزوتوپ اورانيوم ۲۳۸ اورانيوم ۲۳۹ به وجود مي آمد كه بعد از دو بار انتشار پرتوهاي بتا (يا الكترون) به پلوتونيم ۲۳۹ تبديل مي شود كه خود مانند اورانيوم ۲۳۵ شكست پذير است. در اين عمل ۷۰ گرم پلوتونيم حاصل مي شود. ولي اگر نيروگاه سورژنراتور باشد و تعداد نوترون هاي موجود در نيروگاه زياد باشند مقدار جذب به مراتب بيشتر از اين خواهد بودو مقدار پلوتونيم هاي به وجود آمده از مقدار آنهايي كه شكسته مي شوند بيشتر خواهند بود. در چنين حالتي بعد از پياده كردن ميله هاي سوخت مي توان پلوتونيم به وجود آمده را از اورانيوم و فرآورده هاي شكست را به كمك واكنش هاي شيميايي بسيار ساده جدا و به منظور تهيه بمب اتمي ذخيره كرد.
۲ _ نرم كننده ها موادي هستند كه برخورد نوترون هاي حاصل از شكست با آنها الزامي است و براي كم كردن انرژي اين نوترون ها به كار مي روند. زيرا احتمال واكنش شكست پي در پي به ازاي نوترون هاي كم انرژي بيشتر مي شود. آب سنگين (D2O) يا زغال سنگ (گرافيت) به عنوان نرم كننده نوترون به كار برده مي شوند.
۳ _ ميله هاي مهاركننده: اين ميله ها از مواد جاذب نوترون درست شده اند و وجود آنها در داخل رآكتور اتمي الزامي است و مانع افزايش ناگهاني تعداد نوترون ها در قلب رآكتور مي شوند. اگر اين ميله ها كار اصلي خود را انجام ندهند، در زماني كمتر از چند هزارم ثانيه قدرت رآكتور چند برابر شده و حالت انفجاري يا ديورژانس رآكتور پيش مي آيد. اين ميله ها مي توانند از جنس عنصر كادميم و يا بور باشند.
۴ _ مواد خنك كننده يا انتقال دهنده انرژي حرارتي: اين مواد انرژي حاصل از شكست اورانيوم را به خارج از رآكتور انتقال داده و توربين هاي مولد برق را به حركت در مي آورند و پس از خنك شدن مجدداً به داخل رآكتور برمي گردند. البته مواد در مدار بسته و محدودي عمل مي كنند و با خارج از محيط رآكتور تماسي ندارند. اين مواد مي توانند گاز CO2 ، آب، آب سنگين، هليم گازي و يا سديم مذاب باشند.



برچسب ها : ساختار نيروگاه اتمي
ارسال شده در سه شنبه 28 بهمن 1396 ساعت 21:20 توسط (( میلاد بیات ))

 ساختار نيروگاه اتمي  
به طور خلاصه چگونگي كاركرد نيروگاه هاي اتمي را بيان كرده و ساختمان دروني آنها را مورد بررسي قرار مي دهيم.
طي سال هاي گذشته اغلب كشورها به استفاده از اين نوع انرژي هسته اي تمايل داشتند و حتي دولت ايران ۱۵ نيروگاه اتمي به كشورهاي آمريكا، فرانسه و آلمان سفارش داده بود. ولي خوشبختانه بعد از وقوع دو حادثه مهم تري ميل آيلند (Three Mile Island) در ۲۸ مارس ۱۹۷۹ و فاجعه چرنوبيل (Tchernobyl) در روسيه در ۲۶ آوريل ۱۹۸۶، نظر افكار عمومي نسبت به كاربرد اتم براي توليد انرژي تغيير كرد و ترس و وحشت از جنگ اتمي و به خصوص امكان تهيه بمب اتمي در جهان سوم، كشورهاي غربي را موقتاً مجبور به تجديدنظر در برنامه هاي اتمي خود كرد.
نيروگاه اتمي در واقع يك بمب اتمي است كه به كمك ميله هاي مهاركننده و خروج دماي دروني به وسيله مواد خنك كننده مثل آب و گاز، تحت كنترل درآمده است. اگر روزي اين ميله ها و يا پمپ هاي انتقال دهنده مواد خنك كننده وظيفه خود را درست انجام ندهند، سوانح متعددي به وجود مي آيد و حتي ممكن است نيروگاه نيز منفجر شود، مانند فاجعه نيروگاه چرنوبيل شوروي. يك نيروگاه اتمي متشكل از مواد مختلفي است كه همه آنها نقش اساسي و مهم در تعادل و ادامه حيات آن را دارند. اين مواد عبارت اند از:
۱ _ ماده سوخت متشكل از اورانيوم طبيعي، اورانيوم غني شده، اورانيوم و پلوتونيم است.
عمل سوختن اورانيوم در داخل نيروگاه اتمي متفاوت از سوختن زغال يا هر نوع سوخت فسيلي ديگر است. در اين پديده با ورود يك نوترون كم انرژي به داخل هسته ايزوتوپ اورانيوم ۲۳۵ عمل شكست انجام مي گيرد و انرژي فراواني توليد مي كند. بعد از ورود نوترون به درون هسته اتم، ناپايداري در هسته به وجود آمده و بعد از لحظه بسيار كوتاهي هسته اتم شكسته شده و تبديل به دوتكه شكست و تعدادي نوترون مي شود. تعداد متوسط نوترون ها به ازاي هر ۱۰۰ اتم شكسته شده ۲۴۷ عدد است و اين نوترون ها اتم هاي ديگر را مي شكنند و اگر كنترلي در مهار كردن تعداد آنها نباشد واكنش شكست در داخل توده اورانيوم به صورت زنجيره اي انجام مي شود كه در زماني بسيار كوتاه منجر به انفجار شديدي خواهد شد.
در واقع ورود نوترون به درون هسته اتم اورانيوم و شكسته شدن آن توام با انتشار انرژي معادل با ۲۰۰ ميليون الكترون ولت است اين مقدار انرژي در سطح اتمي بسيار ناچيز ولي در مورد يك گرم از اورانيوم در حدود صدها هزار مگاوات است. كه اگر به صورت زنجيره اي انجام شود، در كمتر از هزارم ثانيه مشابه بمب اتمي عمل خواهد كرد.
اما اگر تعداد شكست ها را در توده اورانيوم و طي زمان محدود كرده به نحوي كه به ازاي هر شكست، اتم بعدي شكست حاصل كند شرايط يك نيروگاه اتمي به وجود مي آيد. به عنوان مثال نيروگاهي كه داراي ۱۰ تن اورانيوم طبيعي است قدرتي معادل با ۱۰۰ مگاوات خواهد داشت و به طور متوسط ۱۰۵ گرم اورانيوم ۲۳۵ در روز در اين نيروگاه شكسته مي شود و همان طور كه قبلاً گفته شد در اثر جذب نوترون به وسيله ايزوتوپ اورانيوم ۲۳۸ اورانيوم ۲۳۹ به وجود مي آمد كه بعد از دو بار انتشار پرتوهاي بتا (يا الكترون) به پلوتونيم ۲۳۹ تبديل مي شود كه خود مانند اورانيوم ۲۳۵ شكست پذير است. در اين عمل ۷۰ گرم پلوتونيم حاصل مي شود. ولي اگر نيروگاه سورژنراتور باشد و تعداد نوترون هاي موجود در نيروگاه زياد باشند مقدار جذب به مراتب بيشتر از اين خواهد بودو مقدار پلوتونيم هاي به وجود آمده از مقدار آنهايي كه شكسته مي شوند بيشتر خواهند بود. در چنين حالتي بعد از پياده كردن ميله هاي سوخت مي توان پلوتونيم به وجود آمده را از اورانيوم و فرآورده هاي شكست را به كمك واكنش هاي شيميايي بسيار ساده جدا و به منظور تهيه بمب اتمي ذخيره كرد.
۲ _ نرم كننده ها موادي هستند كه برخورد نوترون هاي حاصل از شكست با آنها الزامي است و براي كم كردن انرژي اين نوترون ها به كار مي روند. زيرا احتمال واكنش شكست پي در پي به ازاي نوترون هاي كم انرژي بيشتر مي شود. آب سنگين (D2O) يا زغال سنگ (گرافيت) به عنوان نرم كننده نوترون به كار برده مي شوند.
۳ _ ميله هاي مهاركننده: اين ميله ها از مواد جاذب نوترون درست شده اند و وجود آنها در داخل رآكتور اتمي الزامي است و مانع افزايش ناگهاني تعداد نوترون ها در قلب رآكتور مي شوند. اگر اين ميله ها كار اصلي خود را انجام ندهند، در زماني كمتر از چند هزارم ثانيه قدرت رآكتور چند برابر شده و حالت انفجاري يا ديورژانس رآكتور پيش مي آيد. اين ميله ها مي توانند از جنس عنصر كادميم و يا بور باشند.
۴ _ مواد خنك كننده يا انتقال دهنده انرژي حرارتي: اين مواد انرژي حاصل از شكست اورانيوم را به خارج از رآكتور انتقال داده و توربين هاي مولد برق را به حركت در مي آورند و پس از خنك شدن مجدداً به داخل رآكتور برمي گردند. البته مواد در مدار بسته و محدودي عمل مي كنند و با خارج از محيط رآكتور تماسي ندارند. اين مواد مي توانند گاز CO2 ، آب، آب سنگين، هليم گازي و يا سديم مذاب باشند.



برچسب ها : ساختار نيروگاه اتمي
ارسال شده در سه شنبه 28 بهمن 1396 ساعت 21:18 توسط (( میلاد بیات ))

 ايزوتوپ هاي اورانيوم  
تعداد نوترون ها در اتم هاي مختلف يك عنصر همواره يكسان نيست كه براي مشخص كردن آنها از كلمه ايزوتوپ استفاده مي شود.
بنابراين اتم هاي مختلف يك عنصر را ايزوتوپ مي گويند. مثلاً عنصر هيدروژن سه ايزوتوپ دارد: هيدروژن معمولي كه فقط يك پروتون دارد و فاقد نوترون است. هيدروژن سنگين يك پروتون و يك نوترون دارد كه به آن دوتريم گويند و نهايتاً تريتيم كه از دو نوترون و يك پروتون تشكيل شده و ناپايدار است و طي زمان تجزيه مي شود.
ايزوتوپ سنگين هيدروژن يعني دوتريم در نيروگاه هاي اتمي كاربرد دارد و از الكتروليز آب به دست مي آيد. در جنگ دوم جهاني آلماني ها براي ساختن نيروگاه اتمي و تهيه بمب اتمي در سوئد و نروژ مقادير بسيار زيادي آب سنگين تهيه كرده بودند كه انگليسي ها متوجه منظور آلماني ها شده و مخازن و دستگاه هاي الكتروليز آنها را نابود كردند.
غالب عناصر ايزوتوپ دارند از آن جمله عنصر اورانيوم، چهار ايزوتوپ دارد كه فقط دو ايزوتوپ آن به علت داشتن نيمه عمر نسبتاً بالا در طبيعت و در سنگ معدن يافت مي شوند. اين دو ايزوتوپ عبارتند از اورانيوم ۲۳۵ و اورانيوم ۲۳۸ كه در هر دو ۹۲ پروتون وجود دارد ولي اولي ۱۴۳ و دومي ۱۴۶ نوترون دارد. اختلاف اين دو فقط وجود ۳ نوترون اضافي در ايزوتوپ سنگين است ولي از نظر خواص شيميايي اين دو ايزوتوپ كاملاً يكسان هستند و براي جداسازي آنها از يكديگر حتماً بايد از خواص فيزيكي آنها يعني اختلاف جرم ايزوتوپ ها استفاده كرد. ايزوتوپ اورانيوم ۲۳۵ شكست پذير است و در نيروگاه هاي اتمي از اين خاصيت استفاده مي شود و حرارت ايجاد شده در اثر اين شكست را تبديل به انرژي الكتريكي مي نمايند. در واقع ورود يك نوترون به درون هسته اين اتم سبب شكست آن شده و به ازاي هر اتم شكسته شده ۲۰۰ ميليون الكترون ولت انرژي و دو تكه شكست و تعدادي نوترون حاصل مي شود كه مي توانند اتم هاي ديگر را بشكنند. بنابراين در برخي از نيروگاه ها ترجيح مي دهند تا حدي اين ايزوتوپ را در مخلوط طبيعي دو ايزوتوپ غني كنند و بدين ترتيب مسئله غني سازي اورانيوم مطرح مي شود.



برچسب ها : ايزوتوپ هاي اورانيوم
ارسال شده در سه شنبه 28 بهمن 1396 ساعت 21:17 توسط (( میلاد بیات ))

 برتری انرژی هسته ای بر سایر انرژیها:  
علاوه بر صرفه اقتصادی دلایل زیر استفاده از انرژی هسته ای را ضروری مینماید. منابع فسیلی محدود بوده و متعلق به نسلهای آتی میباشد. استفاده از نفت خام در صنایع تبدیل پتروشیمی ارزش بیشتری دارد. تولید برق از طریق نیروگاه اتمی ، آلودگی نیروگاههای کنونی را ندارد. تولید هفت هزار مگاوات با مصرف 190 میلیون شبکه نفت خام ، هزارتن دیاکسید کربن ، 150 تن ذرات معلق در هوا ، 130 تن گوگرد و 50 تن اکسید نیتروژن را در محیط زیست پراکنده می کند، در حالی که نیروگاه اتمی چنین آلودگی را ندارد.
ساختار نيروگاه هاي اتمي جهان و نيز شرح مختصري درباره طرز غني سازي اورانيوم
مطالبي در مورد ساختار نيروگاه هاي اتمي جهان و نيز شرح مختصري درباره طرز غني سازي اورانيوم و يا سنتز عنصر پلوتونيوم :
برحسب نظريه اتمي عنصر عبارت است از يك جسم خالص ساده كه با روش هاي شيميايي نمي توان آن را تفكيك كرد. از تركيب عناصر با يكديگر اجسام مركب به وجود مي آيند. تعداد عناصر شناخته شده در طبيعت حدود ۹۲ عنصر است.
هيدروژن اولين و ساده ترين عنصر و پس از آن هليم، كربن، ازت، اكسيژن و... فلزات روي، مس، آهن، نيكل و... و بالاخره آخرين عنصر طبيعي به شماره ۹۲، عنصر اورانيوم است. بشر توانسته است به طور مصنوعي و به كمك واكنش هاي هسته اي در راكتورهاي اتمي و يا به كمك شتاب دهنده هاي قوي بيش از ۲۰ عنصر ديگر بسازد كه تمام آن ها ناپايدارند و عمر كوتاه دارند و به سرعت با انتشار پرتوهايي تخريب مي شوند. اتم هاي يك عنصر از اجتماع ذرات بنيادي به نام پرتون، نوترون و الكترون تشكيل يافته اند. پروتون بار مثبت و الكترون بار منفي و نوترون فاقد بار است.
تعداد پروتون ها نام و محل قرار گرفتن عنصر را در جدول تناوبي (جدول مندليف) مشخص مي كند. اتم هيدروژن يك پروتون دارد و در خانه شماره ۱ جدول و اتم هليم در خانه شماره ۲، اتم سديم در خانه شماره ۱۱ و... و اتم اورانيوم در خانه شماره ۹۲ قرار دارد. يعني داراي ۹۲ پروتون است.




برچسب ها : برتری انرژی هسته ای بر سایر انرژیها
ارسال شده در سه شنبه 28 بهمن 1396 ساعت 21:16 توسط (( میلاد بیات ))

 کاربرد انرژی هسته ای در تولید برق :  
یکی از مهم ترین موارد استفاده صلح آمیز از انرژی هسته ای ، تولید برق از طریق نیروگاههای اتمی است. با توم به پایان پذیر بودن منابع فسیلی و روند رو به رشد توسعه اجتماعی و اقتصادی ، استفاده از انرژی هسته ای برای تولید برق را امری ضروری و لازم می دانند و ساخت چند نیروگاه اتمی را دنبال مینماید.
ایران هر ساله حدودا به هفت هزار مگاوات برق در سال نیاز دارد. نیروگاه اتمی بوشهر 1000 مگاوات برق را در صورت راه اندازی تامین می نماید. و احداث نیروگاههای دیگر برای رفع این نیازی ضروری است. برای تولید میزان برق حدود 190 میلیون بشکه نفت خام مصرف می شود. که در صورت تامین از طریق انرژی هسته ای سالیانه 5 میلیارد دلار صرفه جویی خواهد شد.



برچسب ها : کاربرد انرژی هسته ای در تولید برق
ارسال شده در سه شنبه 28 بهمن 1396 ساعت 21:16 توسط (( میلاد بیات ))

 انرژی هسته ای در پزشکی هسته ای و امور بهداشتی:  
در کشورهای پیشرفته صنعتی ، از انرژی هسته ای به صورت گسترده در پزشکی استفاده می گردد. با توجه به شیوع برخی از بیماریها از جمله سرطان ، ضرورت تقویت طب هسته ای در کشورهای در حال توسعه ، هر روز بیشتر می شود. موارد زیر از مصادیق تکنیکهای هسته ای در علم پزشکی است:
تهیه و تولید کیتهای رادیو دارویی جهت مراکز پزشکی هسته ای
تهیه و تولید رادیو دارویی جهت تشخیص بیماری تیرویید و درمان آنها
تهیه و تولید کیتهای هورمونی
تشخیص و درمان سرطان پروستات
تشخیص سرطان کولون ، روده کوچک و برخی سرطانهای سینه
تشخیص تومورهای سرطانی و بررسی تومورهای مغزی ، سینه و ناراحتی وریدی
تصویر برداری بیماریهای قلبی ، تشخیص عفونتها و التهاب مفصلی ، آمبولی و لختههای وریدی
موارد دیگری چون تشخیص کم خونی ، کنترل رادیو داروهای خوراکی و تزریقی



برچسب ها : انرژی هسته ای در پزشکی هسته ای و امور بهداشتی
ارسال شده در سه شنبه 28 بهمن 1396 ساعت 21:15 توسط (( میلاد بیات ))

 کاربردهای صنعتی:
در صنعت کاربردها ی زیادی دارد از جمله مهمترین آنها عبارتند از:

• نشت یابی با اشعه
• دبی سنجی پرتویی(سنجش شدت تشعشعات ، نور و فیزیک امواج)
• سنجش پرتویی میزان سائیدگی قطعات در حین کار
• سنجش پرتویی میزان خوردگی قطعات
• چگالی سنج موادمعدنی با اشعه
• کشف عناصر نایاب در معادن

تکنیکهای هسته ای بر کشف مینهای ضد نفر نیز کاربرد دارد. بنابرین ، دانش هسته ای با این قدرت و وسعتی که دارد، هر روز بر دامنه استفاده از فناوری هسته ای و بویژه انرژی هسته ای افزوده می شود. کاربرد انرژی در بخشهای مختلف به گونهای است که اگر کشوری فناوری هسته ای را نهادینه نماید، در بسیاری از حوزه‌های علمی و صنعتی ، ارتقای پیدا می کند و مسیر توسعه را با سرعت طی می نماید.



برچسب ها : کاربردهای صنعتی
ارسال شده در سه شنبه 28 بهمن 1396 ساعت 21:14 توسط (( میلاد بیات ))

 کاربردهای کشاورزی:
تشعشعات هسته ای کاربرد های زیادی در کشاورزی دارد که مهم ترین آنها عبارتست از:

• موتاسیون هسته ای ژن ها در کشاورزی
• کنترل حشرات با تشعشعات هسته ای
• جلوگیری از جوانه زدن سیب زمینی با اشعه گاما
• انبار کردن میوه ها
• دیرینه شناسی )باستان شناسی) و صخره شناسی )زمین شناسی) که عمر یابی صخره ها با C14 در باستان شناسی خیلی مشهور است



برچسب ها : کاربردهای کشاورزی
ارسال شده در سه شنبه 28 بهمن 1396 ساعت 21:14 توسط (( میلاد بیات ))

 کاربردهای پزشکی:  
در پزشکی تشعشعات هسته ای کاربردهای زیادی دارند که اهم آنها عبارتند از:
• رادیو گرافی
• گامااسکن
• استرلیزه کردن هسته ای و میکروب زدایی وسایل پزشکی با پرتو های هسته ای
• رادیو بیولوژی
کاربرد انرژی هسته ای در بخش دامپزشکی و دامپروری :
تکنیکهای هسته ای در حوزه دامپزشکی موارد مصرفی چون تشخیص و درمان بیماریهای دامی ، تولید مثل دام ، اصلاح نژاد و دام ، تغذیه ، بهداشت و ایمن سازی محصولات دامی و خوراک دام دارد
کاربرد انرژی هسته ای در دسترسی به منابع آب :
تکنیکهای هسته ای برای شناسایی حوزه های آب زیر زمینی هدایت آبهای سطحی و زیر زمینی ، کشف و کنترل نشت و ایمنی سدها مورد استفاده قرار میگیرد. در شیرین کردن آبهای شور نیز انرژی هستهای کاربرد دارد.



برچسب ها : کاربردهای پزشکی:
ارسال شده در سه شنبه 28 بهمن 1396 ساعت 21:13 توسط (( میلاد بیات ))

 نیروگاه هسته ای (Nuclear Power Station) :  
یک نیروگاه الکتریکی که از انرژی تولیدی شکست هسته اتم اورانیوم یا پلوتونیم استفاده می کند. چون شکست سوخت هسته ای اساساً گرما تولید می کند از گرمای تولید شده رآکتور های هسته ای برای تولید بخار استفاده می شود از بخار تولید شده برای به حرکت در آوردن توربین ها و ژنراتور ها که نهایتاً برای تولید برق استفاده می شود .
پیل هسته ای یا اتمی دستگاه تبدیل کننده انرژی اتمی به جریان برق مستقیم است ساده ترین پیل ها شامل دو صفحه است. یک پخش کننده بتای خالص مثل استرنیوم 90 و یک هادی مثل سیلسیوم.



برچسب ها : نیروگاه هسته ای (Nuclear Power Station) :
ارسال شده در سه شنبه 28 بهمن 1396 ساعت 21:13 توسط (( میلاد بیات ))

 پزشکی هسته ای و درمان بیماریها  
يكي از روشهاي تشخيصي و درماني ارزشمند در طب، پزشكي هسته اي مي باشد. كه تبلور آن از ابتدا تا كنون تلفيقي از كشفيات مهم تاريخي بوده است
اولين استفاده كلينيكي مواد راديواكتيو، در سال 1937 جهت درمان لوسمي در دانشگاه كاليفرنيا در بركلي بود. بعــــــد از آن در 1946 با استــــــفاده از اين مواد توانستند در يك بيمار مبتلا به سرطان تيروئـــــيد از پيشرفت اين بيماري جلوگيري كنند.
در دهه 1970 توانستند با جاروب نمودن از ارگانهاي ديگر بدن مانند كبد و طحال، تومورهاي مغزي و مجاري گوارشي تصاويري را تهيه نمايند.
در دهه 1980 از راديو داروها جهت تشخيص بيماري هاي قلبي استفاده نمودند و هم اكنون نيز با ضريب اطمينان بسيار بالايي از پزشكي هسته اي در درمان و تشخيص و پيگيري روند درمان بيماريها استفاده مي گردد.
انرژی هسته ای کاربرداری زیاد در پزشکی در علوم و صنعت و کشاورزی و... دارد. لازم به ذکر است انرژی هسته ای به تمامی انرژی های دیگر قابل تبدیل است ولی هیچ انرژی به انرژی هسته ای تبدیل نمی شود .موارد زیادی از کاربردهای انرژی هسته ای در زیر آورده می شود .



برچسب ها : پزشکی هسته ای و درمان بیماریها
ارسال شده در سه شنبه 28 بهمن 1396 ساعت 21:12 توسط (( میلاد بیات ))

 پزشکی هسته ای :  
تصویر برداری در پزشکی هسته ای
توموگرافی تابش پوزیترون (PET)
(SPECT) توموروگرافی با استفاده از تابش تک فوتون
تصویر برداری قلبی عروقی
اسکن استخوان



برچسب ها : پزشکی هسته ای :
ارسال شده در سه شنبه 28 بهمن 1396 ساعت 21:11 توسط (( میلاد بیات ))

 مزایایی استفاده از انژری هسته ای  
انرژي در جهان امروز يك عامل راهبردي است و اغلب كشورهاي جهان به خصوص آنها كه به دنبال اعمال اراده و قدرت خود بر ديگر كشورها مي باشند از همين دريچه به مقوله انرژي مي نگرند.
سوخت هاي فسيلي مانند ذغال سنگ، مقدار قابل توجهي از انواع آلاينده ها همانند تركيبات كربن و گوگرد را وارد محيط زيست مي سازند كه براي سلامت انسان زيانبار است. از سوي ديگر با توجه به افزايش مصرف برق و پايان پذير بودن منابع سوخت فسيلي به نظر مي رسد استفاده از انرژي هسته اي بهترين گزينه موجود باشد.
ايران ۳۰ هزار مگاوات نيروگاه دارد و در ده سال آينده، احتمالاً به۶۰ هزار مگاوات خواهد رسيد. بالا رفتن حجم توليد گازهاي گلخانه اي، هزينه هاي اجتماعي خاصي را ايجاد مي كند كه بالطبع بايد جلوي توليد گازهاي گلخانه اي را در نيروگاههاي فسيلي گرفت،
در حال حاضر روسيه ۸ ميليون بشكه نفت در روز توليد و حدود ۵ ميليون از آن را صادر مي كند. ۳۰ نيروگاه هسته اي دارد و به سرعت هم به نيروگاههاي خود اضافه مي كند، در حالي كه اولين كشور در ذخاير گازي است و جمعيت آن هم تنها كمي بيشتر از دو برابر ماست.
در اين شرايط آمريكا هم ۱۰۵ نيروگاه هسته اي دارد، لذا فقط معيارهاي اقتصادي هم مطرح نيست و معيارهاي مختلف فن آوري تأثير گذار خواهد بود. در واقع تكنولوژي هسته اي، ميعاد گاه تكنولوژي هاي ديگر است. مثل صنعت خودرو كه اگر در يك كشور رونق خوبي داشته باشد، تقريباً بخش عمده اي از تكنولوژي را جلو مي برد، چرا كه بيشتر علوم و تكنولوژي ها مثل مكانيك، شيمي، مواد، برق و...
صنعت غني سازي هم عمر كمي ندارد و دست كم ۴۰ سال است كه اين كار شروع شده است.
چون در غني سازي اورانيوم جهت استفاده در راكتورهاي هسته اي از علوم مختلف مهندسي، مكانيك، شيمي و... با نهايت دقت و قدرت استفاده مي شود. به طور كلي تعريف جديد مهندسي براساس ميزان دقت است و كشوري پيشرفته ناميده مي شود كه ميزان خطاي مهندسي آن كم باشد.
براي رسيدن به استقلال واقعي، بايد به سمت توليد فن آوري و علم رفت. البته اين روند بالطبع هزينه دارد. همه جاي دنيا هم، اين گونه است. به هر حال هزينه رسيدن به تكنولوژي هسته اي با اين همه عظمت، كار و فعاليت همه جانبه متخصصين ايراني و استفاده از تجربه كشورهاي دارنده اين صنعت را طلب مي كند.
مقوله انرژي براي كشورهاي سلطه طلب، نقش موتور محركه اقتصاد و توليد ملي و تعيين كننده جايگاه آنها در نظام سرمايه داري جهان را دارد و همچنين تضمين كننده منافع و امنيت ملي آنها است، براي كشور ما نيز چگونگي سامان دهي به سياستهاي بخش انرژي، نقش كليدي در فرآيند تحولات سياسي، اجتماعي و اقتصادي را داراست و لذا ضروري است كه براي انرژي و بخصوص نفت و گاز و به دنبال اينها انرژي هسته اي، برنامه و استراتژي انديشيده و متناسب با شرايط واقعي موجود داخلي و جهاني داشته باشيم.
دغدغه اصلي جهان عادت كرده به مصرف انرژي، در دو دهه آينده، توليد انرژي و ساخت نيروگاه اتمي به عنوان تنها راه خروج از بحران انرژي در دهه هاي آينده است. در اين بين از آن جا كه ساخت يك نيروگاه اتمي اغلب علوم و فنون را به كار مي گيرد،
نيروگاه برق اتمي، اقتصادي ترين نيروگاهي است كه امروز در دنيا احداث مي شود.
انرژی هسته‌ای در زمینه‌های مختلف پزشکی، موزه‌ها، شناسایی کوچکترین شکاف یا ناخالصی در مواد و موتور هواپیما و اتومبیل، پیشگیری از فساد زودرس محصولات کشاورزی و رشد گیاهان کاربرد دارد.
علم طب شناخت خود را جهت درمان و پیشگیری از بیماری اشعه وسعت داد و همزمان از اشعه به صور مختلف در تشخیص و درمان بیماری‌ها از جمله سرطان استفاده کرد. رادیوتراپی جایگاه ویژه در درمان سرطان‌ها پیدا کرد و طب هسته به عنوان یک رشته تخصصی در پزشکی روز وارد شد



برچسب ها : مزایایی استفاده از انژری هسته ای
ارسال شده در سه شنبه 28 بهمن 1396 ساعت 21:10 توسط (( میلاد بیات ))

 تبديل و تغيير  
محلول آسياب شده اورانيوم مستقيماً قابل استفاده به‌عنوان سوخت در راكتورهاي هسته‌اي نيست. پردازش اضافي به غني‌سازي اورانيوم مربوط است كه براي تمام راكتورها لازم است.
اين عمل اورانيوم را به نوع گازي تبديل مي‌كند و راه به‌دست آوردن آن تبديل كردن به هگزا فلوريد (Hexa Fluoride) است كه در دماي نسبتاً پايين گاز است.
در وسيله‌اي تبديل‌گر، اورانيوم به اورانيوم دي‌اكسيد تبديل مي‌شود كه در راكتورهايي كه نياز به اورانيوم غني شده ندارند استفاده مي‌شود.
بيشتر آنها بعداز آن كه به هگزافلوريد تبديل شدند براي غني‌سازي در كارخانه آماده هستند و در كانتينرهايي كه از جنس فلز مقاوم و محكم است حمل مي‌شوند. خطر اصلي اين طبقه از چرخه سوختي اثر هيدروژن فلوريد (Hydrogen Fluoride) است.



برچسب ها : تبديل و تغيير
ارسال شده در سه شنبه 28 بهمن 1396 ساعت 21:10 توسط (( میلاد بیات ))

 آسياب كردن اورانيوم  
محل آسياب كردن معمولاً به معدن استخراج اورانيوم نزديك است. بيشتر امكانات استخراجي شامل يك آسياب مي‌شود. هرچه جايي كه معدن‌ها قرار دارند به هم نزديك‌تر باشند يك آسياب مي‌تواند عمل آسياب‌سازي چند معدن را انجام دهد. عمل آسياب‌سازي اكسيد اورانيوم غليظي توليد مي‌كند كه از آسياب حمل مي‌شود. گاهي اوقات به اين اكسيدها كيك زرد مي‌گويند كه شامل 80 درصد اورانيوم مي‌باشد. سنگ معدن اصل شايد داراي چيزي در حدود 1/0 درصد اورانيوم باشد.
در يك آسياب، اورانيوم با عمل سنگ‌شويي از سنگ‌هاي معدني خرد شده جدا مي‌شود كه يا با اسيد قوي و يا با محلول قليايي قوي حل مي‌شود و به صورت محلول در مي‌آيد. سپس اورانيوم با ته‌نشين كردن از محلول جدا مي‌شود و بعداز خشك كردن و معمولاً حرارت دادن به صورت اشباع شده و غليظ در استوانه‌هاي 200 ليتري بسته‌بندي مي‌شود.
باقيمانده سنگ معدن كه بيشتر شامل مواد پرتوزا و سنگ معدن مي‌شود در محلي معين به دور از محيط معدن در امكانات مهندسي نگهداري مي‌شود. (معمولاً در گودال‌هايي روي زمين).
پس‌مانده‌هاي داراي مواد راديواكتيو عمري طولاني دارند و غلظت آنها كم خاصيتي سمي دارند. هرچند مقدار كلي عناصر پرتوزا كمتر از سنگ معدن اصلي است و نيمه عمر آنها كوتاه خواهد بود اما اين مواد بايد از محيط زيست دور بمانند.



برچسب ها : آسياب كردن اورانيوم
ارسال شده در سه شنبه 28 بهمن 1396 ساعت 21:9 توسط (( میلاد بیات ))

 استخراج اورانيوم  
هر دو نوع حفاري و تكنيك‌هاي موقعيتي براي كشف كردن اورانيوم به كار مي‌روند، حفاري ممكن است به صورت زيرزميني يا چال‌هاي باز و روي زمين انجام شود.
در كل، حفاري‌هاي روزميني در جاهايي استفاده مي‌شود كه ذخيره معدني نزديك به سطح زمين و حفاري‌هاي زيرزميني براي ذخيره‌هاي معدني عميق‌تر به كار مي‌رود. به‌طور نمونه براي حفاري روزميني بيشتر از 120 متر عمق، نياز به گودال‌هاي بزرگي بر سطح زمين است؛ اندازه گودال‌ها بايد بزرگتر از اندازه ذخيره معدني باشد تا زماني كه ديواره‌هاي گودال محكم شوند تا مانع ريزش آنها شود. در نتيجه، تعداد موادي كه بايد به بيرون از معدن انتقال داده شود تا به كانه دسترسي پيدا كند زياد است.
حفاري‌هاي زيرزميني داراي خرابي و اخلال‌هاي كمتري در سطح زمين هستند و تعداد موادي كه بايد براي دسترسي به سنگ معدن يا كانه به بيرون از معدن انتقال داده شوند به‌طور قابل ملاحظه‌اي كمتر از حفاري نوع روزميني است.
مقدار زيادي از اورانيوم جهاني از (ISL) (In Sitaleding) مي‌آيد. جايي كه آب‌هاي اكسيژنه زيرزميني در معدن‌هاي كانه‌اي پرمنفذ به گردش مي‌افتند تا اورانيوم موجود در معدن را در خود حل كنند و آن را به سطح زمين آورند. (ISL) شايد با اسيد رقيق يا با محلول‌هاي قليايي همراه باشد تا اورانيوم را محلول نگهدارد، سپس اورانيوم در كارخانه‌هاي آسياب‌سازي اورانيوم، از محلول خود جدا مي‌شود.
در نتيجه انتخاب روش حفاري براي ته‌نشين كردن اورانيوم بستگي به جنس ديواره معدن كانه سنگ، امنيت و ملاحظات اقتصادي دارد.
در غالب معدن‌هاي زيرزميني اورانيوم، پيشگيري‌هاي مخصوصي كه شامل افزايش تهويه هوا مي‌شود، لازم است تا از پرتوافشاني جلوگيري شود.




برچسب ها : استخراج اورانيوم
ارسال شده در سه شنبه 28 بهمن 1396 ساعت 21:9 توسط (( میلاد بیات ))

 اورانيوم  
اورانيوم فلزي راديواكتيو و پرتوزاست كه در سراسر پوسته سخت زمين موجود است. اين فلز حدوداً 500 بار از طلا فراوان‌تر و به اندازه قوطي حلبي معمولي و عادي است. اورانيوم اكنون به اندازه‌اي در صخره‌ها و خاك و زمين وجود دارد كه در آب رودخانه‌ها، درياها و اقيانوس‌ها موجود است. براي مثال اين فلز با غلظتي در حدود 4 قسمت در هر ميليون (ppm4) در گرانيت وجود دارد كه 60 درصد از كره زمين را شامل مي‌شود، در كودها با غلظتي بالغ بر ppm400 و در ته‌مانده زغال‌سنگ با غلظتي بيش از ppm100 موجود است. اكثر راديو اكتيويته مربوط به اورانيوم در طبيعت در حقيقت ناشي از معدن‌هاي ديگري است كه با عمليات راديواكتيو به وجود آمده‌اند و در هنگام استخراج از معدن و آسياب كردن به جا مانده‌اند.
چند منطقه در سراسر دنيا وجود دارد كه غلظت اورانيوم موجود در آنها به قدر كافي است كه استخراج آن براي استفاده از نظر اقتصادي به صرفه و امكان‌پذير است. اين نوع مواد غليظ، سنگ معدن يا كانه ناميده مي‌شوند.
- چرخه سوخت هسته‌اي (شكل هندسي) (عكس)



برچسب ها : اورانيوم
ارسال شده در سه شنبه 28 بهمن 1396 ساعت 21:8 توسط (( میلاد بیات ))

انرژی هسته ای
استفاده اصلي از انرژي هسته‌اي، توليد انرژي الكتريسته است. اين راهي ساده و كارآمد براي جوشاندن آب و ايجاد بخار براي راه‌اندازي توربين‌هاي مولد است. بدون راكتورهاي موجود در نيروگاه‌هاي هسته‌اي، اين نيروگاه‌ها شبيه ديگر نيروگاه‌ها زغال‌سنگي و سوختي مي‌شود. انرژي هسته‌اي بهترين كاربرد براي توليد مقياس متوسط يا بزرگي از انرژي الكتريكي به‌طور مداوم است. سوخت اينگونه ايستگاه‌ها را اوانيوم تشكيل مي‌دهد.
چرخه سوخت هسته‌اي تعدادي عمليات صنعتي است كه توليد الكتريسته را با اورانيوم در راكتورهاي هسته‌اي ممكن مي‌كند.
اورانيوم عنصري نسبتاً معمولي و عادي است كه در تمام دنيا يافت مي‌شود. اين عنصر به‌صورت معدني در بعضي از كشورها وجود دارد كه حتماً بايد قبل از مصرف به صورت سوخت در راكتورهاي هسته‌اي، فرآوري شود.
الكتريسته با استفاده از گرماي توليد شده در راكتورهاي هسته‌اي و با ايجاد بخار براي به‌كار انداختن توربين‌هايي كه به مولد متصل‌اند توليد مي‌شود.
سوختي كه از راكتور خارج شده، بعداز اين كه به پايان عمر مفيد خود رسيد مي‌تواند به عنوان سوختي جديد استفاده شود.
فعاليت‌هاي مختلفي كه با توليد الكتريسيته از واكنش‌هاي هسته‌اي همراهند مرتبط به چرخه‌ سوخت هسته‌اي هستند. چرخه سوختي انرژي هسته‌اي با اورانيوم آغاز مي‌شود و با انهدام پسمانده‌هاي هسته‌اي پايان مي‌يابد. دوبار عمل‌آوري سوخت‌هاي خرج شده به مرحله‌هاي چرخه سوخت هسته‌اي شكلي صحيح مي‌دهد.



برچسب ها : انرژی هسته ای
ارسال شده در سه شنبه 28 بهمن 1396 ساعت 21:4 توسط (( میلاد بیات ))

 

در باره انرژی هسته ای بیشتر بدانیم
 




 

انتقاد مصلحانه - ویژه نامه نقد توافق جامع هسته‌ای وین

انرژی هسته ای
استفاده اصلي از انرژي هسته‌اي، توليد انرژي الكتريسته است. اين راهي ساده و كارآمد براي جوشاندن آب و ايجاد بخار براي راه‌اندازي توربين‌هاي مولد است. بدون راكتورهاي موجود در نيروگاه‌هاي هسته‌اي، اين نيروگاه‌ها شبيه ديگر نيروگاه‌ها زغال‌سنگي و سوختي مي‌شود. انرژي هسته‌اي بهترين كاربرد براي توليد مقياس متوسط يا بزرگي از انرژي الكتريكي به‌طور مداوم است. سوخت اينگونه ايستگاه‌ها را اوانيوم تشكيل مي‌دهد.
چرخه سوخت هسته‌اي تعدادي عمليات صنعتي است كه توليد الكتريسته را با اورانيوم در راكتورهاي هسته‌اي ممكن مي‌كند.
اورانيوم عنصري نسبتاً معمولي و عادي است كه در تمام دنيا يافت مي‌شود. اين عنصر به‌صورت معدني در بعضي از كشورها وجود دارد كه حتماً بايد قبل از مصرف به صورت سوخت در راكتورهاي هسته‌اي، فرآوري شود.
الكتريسته با استفاده از گرماي توليد شده در راكتورهاي هسته‌اي و با ايجاد بخار براي به‌كار انداختن توربين‌هايي كه به مولد متصل‌اند توليد مي‌شود.
سوختي كه از راكتور خارج شده، بعداز اين كه به پايان عمر مفيد خود رسيد مي‌تواند به عنوان سوختي جديد استفاده شود.
فعاليت‌هاي مختلفي كه با توليد الكتريسيته از واكنش‌هاي هسته‌اي همراهند مرتبط به چرخه‌ سوخت هسته‌اي هستند. چرخه سوختي انرژي هسته‌اي با اورانيوم آغاز مي‌شود و با انهدام پسمانده‌هاي هسته‌اي پايان مي‌يابد. دوبار عمل‌آوري سوخت‌هاي خرج شده به مرحله‌هاي چرخه سوخت هسته‌اي شكلي صحيح مي‌دهد.

براي ديدن ادامه مطلب به ادامه مطلب برويد

 


تعداد راکتورهای هسته‌ای در جهان در سال ۲۰۱۵ میلادی
کشور رآکتور عملیاتی رآکتور در حال ساخت رآکتور برنامه‌ریزی شده رآکتور پشنهاد شده
 ایالات متحده آمریکا ۹۹ ۵ ۵ ۱۷
 فرانسه ۵۸ ۱ ۱ ۱
 ژاپن ۴۸ ۳ ۹ ۳
 روسیه ۳۴ ۹ ۳۱ ۱۸
 کره جنوبی ۲۳ ۵ ۸ ۰
 چین ۲۲ ۲۷ ۶۴ ۱۲۳
 هند ۲۱ ۶ ۲۲ ۳۶
 کانادا ۱۹ ۰ ۲ ۳
 بریتانیا ۱۶ ۰ ۴ ۷
 اوکراین ۱۵ ۰ ۲ ۱۱
تعداد کل در جهان ۴۳۷ ۷۰ ۱۸۳ ۳۱۱


برچسب ها : تعداد راکتورهای هسته‌ای در جهان در سال ۲۰۱۵ میلادی
ارسال شده در سه شنبه 25 دی 1396 ساعت 20:25 توسط (( میلاد بیات ))

 

نیروگاه هسته‌ای

 
 
 
تاسیسات نیروگاه هسته‌ای ایندین پوینت درایالت نیویورک
 
نیروگاه هسته‌ای ایکاتا در ژاپن فاقد برج‌های خنک‌کننده‌است و تبادل حرارت را به طور مستقیم با آب اقیانوس انجام می‌دهد.

نیروگاه هسته‌ای به تأسیساتی صنعتی و نیروگاهی می‌گویند که بر پایهٔ فناوری هسته‌ای و با کنترل فرایند شکافت هسته‌ای، از گرمای تولید شدهٔ آن اقدام به تولید انرژی الکتریکی می‌کند. کنترل انرژی هسته‌ای با حفظ تعادل در فرایند شکافت هسته‌ای همراه است که با استفاده از گرمای تولیدی برای تولید بخار آب (مانند بیشتر نیروگاه‌های گرمایی) اقدام به چرخاندن توربین‌های بخار و به دنبال آن ژنراتورها می‌کند.

در سال ۲۰۰۴ انرژی هسته‌ای در تولید کل انرژی مصرفی جهان سهمی در حدود ۶٫۵٪، و در تولید انرژی الکتریکی سهمی در حدود ۱۵٫۷٪ داشته‌است و نخستین بار به وسیلهانریکو فرمی در سال ۱۹۳۴ در یکی از آزمایشگاه‌های دانشگاه شیکاگو تولید شد. این اتفاق زمانی رخ داد که تیم او مشغول بمباران کردن هسته اورانیوم با نوترون بودند.

بنا بر پیش‌بینی اتحادیه جهانی هسته‌ای در سال ۲۰۱۵ به طور میانگین هر ۵ روز یک‌بار یک نیروگاه هسته‌ای در جهان آغاز به کار می‌کند. شکافت هسته‌ای صورت گرفته در یکرآکتور فقط بخشی از یک چرخه هسته‌ای است. این چرخه از معادن شروع می‌شود. میزان اورانیوم موجود در پوسته زمین نسبتاً زیاد است به طوری که با منابع فلزاتی همچونقلع و ژرمانیوم برابری می‌کند و تقریباً ۳۵ برابر میزان نقره موجود در پوسته زمین است. اورانیوم ماده تشکیل دهنده بسیاری از اجسام اطراف ما مانند سنگ‌ها و خاک است. بنا بر آمارگیری جهانی معادن شناخته شده جهان در حال حاضر برای تأمین بیش از ۷۰ سال انرژی الکتریکی جهان کافی هستند. بهای میانگین اورانیوم در سال ۲۰۰۷، ۱۳۰ دلار آمریکابه ازای هر کیلوگرم بود. به این ترتیب ثبات تأمین سوخت هسته‌ای از بسیاری از دیگر مواد معدنی بیشتر است.

مهمترین مسئله‌ای که مخالفان انرژی هسته‌ای بیان می‌دارند امنیت محیط زیستی نیروگاه هسته‌ای است زیرا با کوچکترین اشتباه، ممکن است فجایعی مانند فاجعه چرنوبیل به بار آید.



برچسب ها : نیروگاه هسته‌ای
ارسال شده در سه شنبه 25 دی 1396 ساعت 17:24 توسط (( میلاد بیات ))
 
نیروگاه بخار ساسکویئانا، یک رآکتور آب جوشان. رآکتورها داخل ساختمان مهارمستطیلی و در مقابل برج‌های خنک‌کنندهقرار دارند. این نیروگاه، روزانه ۶۳ میلیونواحد برق تولید می‌کند.
 
کشتی‌های هسته‌ای آمریکایی، (از بالا به پایین) رزم‌ناوهای یواس‌اس بینبریج،یواس‌اس لانگ بیچ و یواس‌اس اینترپرایز، طولانی ترین کشتی دریایی، و اولین ناو هواپیمابر هسته‌ای. این عکس در سال ۱۹۶۴، هنگام شکستن رکورد سفر دریایی به اندازهٔ ۲۶۵۴۰ مایل دریایی انگلیس (۴۹۱۹۰ کیلومتر) دور جهان، در ۶۵ روز و بدون سوخت‌گیری گرفته شد. خدمه به گونه‌ای در عرشهٔ کشتی آرایش گرفته‌اند کههم‌ارزی جرم و انرژی اینشتین را نشان می‌دهند.
 
یخ‌شکن هسته‌ای روسی به نام یامالدر یک سفر علمی مشترک با بنیاد ملی علوم در ۱۹۹۴.

انرژی اتمی یا انرژی هسته‌ای عبارست از استفادهٔ فرایندهای هسته‌ای حرارت‌زا برای ایجادگرما و الکتریسیته ی مفید. این واژه شامل شکافت هسته‌ای، پرتوزایی و همجوشی هسته‌ایمی‌باشد. امروزه، شکافت هسته‌ای عناصر دستهٔ آکتینیدها در جدول تناوبی اکثریت قریب به اتفاق انرژی هسته‌ای مورد نیاز بشر را با استفاده از فرایندهای پرتوزایی تولید می‌کند، که در درجهٔ اول به شکل انرژی زمین گرمایی و مولد گرما-الکتریکی ایزوتوپی نیاز انسان را برطرف می‌سازد. نیروگاه‌های هسته‌ای، جدا از سهمی که در تامین رآکتورهای شکافت هسته‌ای نیروهای دریایی دارند، حدود ۵٫۷ درصد انرژی جهان و ۱۳ درصد الکتریسیته جهان را در سال ۲۰۱۲ تامین می‌کردند. در سال ۲۰۱۳، آژانس بین‌المللی انرژی اتمی گزارش داد که ۴۳۷ رآکتور هسته‌ای فعال در ۳۱ کشور وجود دارد اگرچه تمام رآکتورها الکتریسیته تولید نمی‌کنند. به علاوه، تقریباً ۱۴۰ کشتی دریایی وجود دارد که با استفاده از حدوداً ۱۸۰ رآکتور، نیرو محرکهٔ هسته‌ای آنان را تامین می‌کنند. پس از ۲۰۱۳، رسیدن به افزوده خالص انرژی به وسیلهٔ همجوشی هسته‌ای پایدار، به استثنای منابع انرژی همجوشی مانند خورشید، فضایی مداومی برای تحقیقات فیزیکی و مهندسی ایجاد کرده است. انرژی هسته‌ای نوعی انرژیاست که توسط واپاشی هسته‌ای، شکافت هسته‌ای، یا گداخت هسته‌ای تولید شده و اساس آن را می‌توان با معادلهٔ ΔE = Δm.c² توصیف کرد.[۱]

در هر اتمی، ذراتی از انرژی نهفته که اجزای مختلف اتم نیز به وسیلهٔ همان بهم پیوند یافته است لذا هسته اتم منبعی از انرژی بشمار می‌رود که با شکافت اتم این انرژی رها می‌شود. انرژی نهفته در هسته اتم‌های برخی از عناصر (مانند اورانیوم) می‌تواند با آزاد شدن، همان کاری را بکند که سوزاندن مقدار زیادی نفت و گاز انجام می‌دهد که البته سوزاندن نفت و گاز، مشکلات زیست محیطی ایجاد کرده و مقدار زیادی گاز گلخانه‌ای تولید می‌کند.

 
شکافت و همجوشی را می‌توان با این نمودار انرژی بستگی توصیف کرد.

مذاکرات انرژی هسته‌ای به طور مداوم وجود دارد. حامیانی چون سازمان هسته‌ای جهانی،آژانس بین‌المللی انرژی اتمی و طرفداران محیط زیست انرژی هسته‌ای مدعی هستند که انرژی اتمی، یک منبع انرژی ایمن و پایدار است که تولید کربن را کاهش می‌دهد. مخالفانی چون سازمان جهانی صلح سبز و اطلاعات و منابع خدمات هسته‌ای، بر این باورند که انرژی هسته‌ای خطر بزرگی برای انسان و محیط زیست محسوب می‌شود.

حوادث و اتفاقات هسته‌ای و تابشی شامل حادثه چرنوبیل (۱۹۸۶)، حادثه اتمی فوکوشیما ۱(۲۰۱۱) و حادثه تری مایل آیلند (۱۹۷۹)، می‌باشد. تا کنون چندین حادثهٔ زیر آبی نیز اتفاق افتاده است. بررسی از دست دادن حیات به ازای هر واحد انرژی تولید شده، نشان می‌دهند که انرژی هسته‌ای، مرگ و میر کمتری نسبت به دیگر منابع اصلی انرژی، ایجاد می‌کند. انرژی حاصل از زغال سنگ،نفت، گاز طبیعی و انرژی آبی به ازای واحد انرژی تولید شده، به علتآلودگی هوا و حوادث انرژی مرگ و میر بیشتری ایجاد می‌کنند. هزینهٔ انسان برای تخلیهٔ جمعیت‌های تحت تاثیر معیشت‌های از دست رفته، بسیار گزاف است.

همراه سایر منابع انرژی پایدار، انرژی هسته‌ای، روش تولید انرژی کم‌کربن برای ایجاد الکتریسیته است، که در مقایسه با انتشار گازهای گلخانه‌ای در هر واحد از انرژی تولید شده، شبیه سایر منابع تجدید پذیر است. بدین ترتیب، از زمان آغاز تجاری سازی نیروگاه‌های هسته‌ای در دههٔ ۱۹۷۰، از تولید ۶۴ گیگاتن کربن دی اکسید معادل، جلوگیری شده است.

بعد از سال ۲۰۱۲، بر اساس گزارشات آژانس بین‌المللی انرژی اتمی، ۶۸ رآکتور هسته‌ای در ۱۵ کشور در حال ساخت بود و تقریباً ۲۸ عدد از آن‌ها با جدید ترین رآکتورهای هسته‌ای، بهجمهوری خلق چین تعلق داشت. آن‌ها بعد از ماه مه ۲۰۱۳، به تورین برقی متصل شدند. این ماجرا در ۱۷ فوریهٔ ۲۰۱۳ در نیروگاه هسته‌ای هنگیان در چین اتفاق افتاد. در ایالات متحده دورآکتور نسل سه جدید در وگتل در حال ساخت هستند. مقامات عالی رتبهٔ صنعت هسته‌ای ایالات متحده انتظار دارند تا سال ۲۰۲۰، ۵ رآکتور جدید وارد تمام نیروگاه‌های موجود شوند. در سال ۲۰۱۳، رآکتورهای چهار ساله و غیر رقابتی، برای همیشه از رده خارج شدند.

حادثهٔ اتمی فوکوشیما ۱ ژاپن، در سال ۲۰۱۱، که در رآکتوری اتفاق افتاد که در دههٔ ۱۹۶۰ طراحی شده بود، یک بازرسی دوباره برای امنیت و ایمنی هسته‌ایو سیاست انرژی هسته‌ای در بسیاری از کشورها، ایجاد کرد. آلمان تصمیم گرفته است که تا سال ۲۰۲۲ تمام رآکتوهای خود را غیرفعال کند و ایتالیا نیز انرژی هسته‌ای را تحریم کرده است. پس از واقعهٔ فوکوشیما در سال ۲۰۱۱، آژانس بین‌المللی انرژی اتمی تصمیم گرفته است که ظرفیت تولید انرژی هسته‌ای را تا سال ۲۰۳۵ به نصف کاهش دهد.

 

 

استفاده[ویرایش]

 
تاریخچه و طرح استفادهٔ جهانی از منابع انرژی، ۱۹۹۰-۲۰۳۵، منبع: چشم‌انداز بین‌المللی انرژی، سازمان اطلاعات انرژی.
 
ظرفیت و تولید انرژی هسته‌ای، ۱۹۸۰ تا ۲۰۱۰ (سازمان اطلاعات انرژی).
 
روند رشد در ۵ کشور برتر در زمینهٔ تولید انرژی هسته‌ای (داده‌های سازمان اطلاعات انرژی ایالات متحده).
 
وضعیت جهانی انرژی هسته‌ای (برای اطلاعات بیشتر کلیک کنید)
 
درصد برق تولید شده به وسیلهٔ نیروگاه‌های هسته‌ای

در سال ۲۰۱۱ انرژی هسته‌ای ۱۰ درصد الکتریسیتهٔ جهان را تامین می‌کرد. در سال ۲۰۰۷،آژانس بین‌المللی انرژی اتمی اعلام کرد که در سراسر جهان، ۴۳۹ رآکتور انرژی هسته‌ای وجود دارد که در ۳۱ کشور فعالیت می‌کنند. اما اکنون، در پی فاجعهٔ هسته‌ای فوکوشیما، در طی ارزیابی‌ها بسیاری از فعالیت‌ها متوفق شده‌اند. در سال ۲۰۱۱ تولید انرژی هسته‌ای در جهان به اندازهٔ ۴٫۳ درصد کاهش یافت که این مقدار، پس از کاهش شدید در ژاپن (۴۴٫۳- درصد) و آلمان (۲۳٫۳- درصد) بیشترین مقدار بود.

پس از آغاز تجاری شدن انرژی هسته‌ای در اواسط دهه ۱۹۵۰، سال ۲۰۰۸ نخستین سالی بود که هیچ نیروگاه هسته‌ای جدیدی به شبکهٔ جهانی افزوده نشد، اگرچه در سال ۲۰۰۹ دو نیروگاه جدید ساخته شد.

تولید سالانهٔ انرژی هسته‌ای از سال ۲۰۰۷ به بعد، در سراشیبی نسبتاً ملایمی قرار گرفته است، به طوری که در سال ۲۰۰۹، ۱٫۸ درصد کاهش یافت و به ۲۵۵۸ تریلیون وات ساعت رسید که قادر بود ۱۳-۱۴ درصد تقاضای الکتریسیتهٔ جهان را تامین کند. یکی از عوامل اصلی کاهش میزان انرژی هسته‌ای پس از ۲۰۰۷، تعطیلی طولانی مدت رآکتورهای موجود در نیروگاه هسته‌ای کاشیوازاکی کاریوا در اثر زمین‌لرزه دورکران چووتسو بود.

ایالات متحده با تامین ۱۹ درصد الکتریسیتهٔ مصرفی، بیشترین انرژی هسته‌ای را تولید می‌کند، در حالی که فرانسه بالاترین درصد انرژی (۸۰ درصد) را به وسیلهٔ رآکتورهای هسته‌ای تولید می‌سازد. در سراسر اتحادیه اروپا، انرژی هسته‌ای ۳۰ درصد الکتریسیته را تامین می‌کند.سیاست انرژی هسته‌ای بین کشورهای اتحادیه اروپا متفاوت است، و برخی مانند استرالیا،استونی، ایرلند و ایتالیا هیچ نیروگاه هسته‌ای فعالی ندارند. در مقابل، فرانسه تعداد زیادی از این نیروگاه ه، به همراه ۱۶ نیروگاه چند واحدی در اختیار دارد.

در ایالات متحده در حالی که برنامه ریزی شده است که در سال ۲۰۱۳، ارزش صنعت الکتریسیتهٔ گاز و زغال سنگ، به ۸۵ میلیارد دلار برسد، ارزش ژنراتورهای هسته‌ای ۱۸ میلیارد دلار پیش بینی شده است. بسیاری از کشتی‌های نظامی و غیر نظامی (مانند یخ‌شکن)، از نیرو محرکهٔ هسته‌ای دریای استفاده می‌کنند، که نوعی نیروی محرکه است. چند سفینهٔ فضایی نیز به وسیلهٔ رآکتورهای هسته‌ای ارتقا یافته، پرتاب شده‌اند: ۳۳ رآکتور متعلق به سریررست شوروی و یکی متلق به اسنپ-۱۰آ ی آمریکایی بود.

تحقیقات بین‌المللی در زمینهٔ توسعهٔ امنیت ادامه دارد، از جمله می‌توان به نیروگاه‌های ایمن غیر فعال، استفاده از همجوشی هسته‌ای و استفاده‌های اضافی از فرایند گرمایش مانندشکافت آب (در حمایت از اقتصاد هیدروژن)، برای نمک‌زدایی آب دریا و استفاده در سیستمگرمایی ناحیه‌ای اشاره کرد.

استفاده در فضا[ویرایش]

هم شکافت و هم همجوشی با تولید سرعت بالاتر با حجم عکس‌العمل کمتر، در پیشرانش فضایی نقش مهمی ایفا می‌کنند. علت آن چگالی انرژی بالاتر رآکتورهای هسته ایست: حدوداً ۱۰ به قوهٔ ۷ برابر نیرومند تر از عکس العملهای شیمیاییست که نیروی موشک‌های فعلی را تامین می‌کنند. جهان در اتم هست .

تاریخچه[ویرایش]

ریشه‌ها[ویرایش]

تعقیب انرژی هسته‌ای به منظور استفاده از آن برای تولید انرژی الکتریکی پس از کشف این موضوع در قرن ۲۰ام میلادی آغاز شد که عناصر پرتوزا مانند رادیوم، بر اساس هم‌ارزی جرم و انرژی مقدار زیادی انرژی آزاد می‌کنند. اما، کنترل این انرژی نشدنی بود، زیرا طول عمر عناصر پرتوزا، به دلیل طبیعتشان، خیلی کم بود. (شدت انرژی آزاد شده با نیمه‌عمر عناصر نسبت عکس دارد). اما رویای مهار کردن انرژی اتمی، اندکی بلندپروازانه بود، حتی با این وجود که پدران فیزیک هسته‌ای، از جمله ارنست رادرفورد آن را "مهتاب" خوانده بودند. این شرایط بعدها و با کشف شکافت هسته‌ای تغییر کرد.

در سال ۱۹۳۲، جیمز چادویک نوترون را کشف کرد، که به دلیل نداشتن بار الکتریکی، به عنوان ابزاری بالقوه برای آزمایشات هسته‌ای شناخته شد. بمباران مواد با نوترون‌ها به فردریک ژولیو کوری و ایرن ژولیو-کوری کمک کرد تا در سال ۱۹۳۴، رادیواکتیویته مصنوعی را کشف کنند، که سبب شد تا عناصری مانند رادیوم، با قیمت بسیار کمتری نسبت به رادیوم طبیعی، تولید شوند. انریکو فرمی، در ادامهٔ راه آنها، طی تحقیقاتی در دههٔ ۱۹۳۰، بر روی کند کردن نوترونها به منظور افزایش تاثیر رادیواکتیویته مصنوعی تمرکز کرد. آزمایش بمباران اورانیوم با نوترون‌ها سبب شد که فرمی عنصر جدیدی ایجاد کند که عدد اتمی آن بیشتر از اورانیوم و نامش پلوتونیوم بود.

 
دوم دسامبر ۱۹۴۲. تصویر صحنه‌ای که دانشمندان اولین رآکتور هسته‌ای ساخت بشر، یعنی شیکاگو پایل-۱ را مشاهده کردند.

اما در سال ۱۹۳۸، شیمیدانهای آلمانی، اتو هان و فریتس اشتراسمان، به همراه فیزیکدان استرالیایی، لیزه مایتنر و خواهر زاده‌اش اوتو رابرت فریش، برای بررسی گفته‌های فرمی، آزمایش‌هایی را بر روی محصولات بمباران نوترونی اورانیوم انجام دادند. آن‌ها نشان دادند که برخلاف گفتهٔ فرمی، نوترون‌های نسبتاً کوچک، هسته‌های سنگین اتم‌های اورانیوم را به دو قسمت نسبتاً مساوی تقسیم می‌کنند. این یک نتیجهٔ بسیار شگفت انگیز بود: تمام سایر شکل‌های فروپاشی هسته‌ای، تنها شامل تغییرات کوچکی در جرم هسته بودند، در حالی که این فرایند، در بر دارندهٔ یک گسستگی کامل بود. دانشمندان متعددی از جمله لیو زیلارد معتقد بودند که اگر عکسالعمل‌های شکافت، نوترون‌های اضافی آزاد می‌کرد، یک واکنش زنجیره‌ای هسته‌ای خود به خودی ایجاد می‌شد. هنگامی که فردریک ژولیو کوری این موضوع را در سال ۱۹۳۹ مطرح کرد، دانشمندان در بسیاری از کشورها (از جمله ایالات متحده، بریتانیا، فرانسه، آلمان و شوروی) دولت‌های خود را متقاعد ساختند تا قبل از آغاز جنگ جهانی دوم، به منظور به دست آوردن بمب هسته‌ای، از آن‌ها در تحقیقات شکافت هسته‌ای حمایت کنند.

در ایالات متحده، جایی که فرمی و زیلارد، هر دو مهاجر بودند، اولین رآکتور ساخت بشر با نام شیکاگو پایل-۱ اختراع شد که در دوم دسامبر ۱۹۴۲ به حالت بحرانی رسید. این کار به بخشی از پروژه منهتن تبدیل شد که غنی‌سازی اورانیوم را ایجاد کرد و رآکتورهای بزرگی را برای تولید پلوتونیوم به منظور استفاده در اولین جنگ‌افزارهای هسته‌ای ساخت، همان جنگ‌افزارهایهایی که بر سر شهرهای هیروشیما و ناگازاکی فرود آمد.

 
اولین لامپ‌هایی که با برق تولید شده توسط انرژی هسته‌ای در رآکتور آزمایشگاهی بریدر ۱ در آزمایشگاه ملی آرگون به تاریخ ۲۰ دسامبر ۱۹۵۱، روشن شدند.

به طور غیر منتظره، هزینه‌های بالای برنامهٔ جنگ‌افزارهای هسته‌ای، به همراه رقابت با شوروی و تمایل به گسترش دموکراسی در سرتاسر جهان، فشاری بر روی مقامات فدرال وارد ساخت تا صنعت انرژی هسته‌ای غیر نظامی را توسعه دهند تا بتواند به توجیه مصرف‌های قابل توجه دولت کمک کند. در سال ۱۹۴۵، کتاب جیبی ‘’عصر اتمی’’ ندا داد که انرژی اتمی وارد اشیای روزمره شده و در آینده، سوخت‌های فسیلی نا کارآمد خواهند شد. نویسندهٔ علمی، دیوید دیاز، بیان کرد که در آینده زمانی فرا خواهد رسید که به جای دو یا سه بار پر کردن باک اتوموبیل در هفته، می‌توان به وسیلهٔ یک ساچمهٔ اتمی به اندازهٔ قرض جوشان ویتامین، به مدت یک سال رانندگی کرد. گلن سیبورگ رئیس سابق کمیسیون انرژی اتمی نوشت، "در آینده، شاتل‌های زمین به ماه هسته‌ای، مصنوعات هسته‌ای، استخرهای شنای گرمایشی به وسیلهٔ پلوتونیوم و غیره به وجود خواهد آمد."

بریتانیا، کانادا و اتحاد جماهیر شوروی در اواخر دههٔ ۱۹۴۰ و اوایل دههٔ ۱۹۵۰ پا به این عرصه نهادند. برای اولین بار، در بیستم دسامبر ۱۹۵۱، حدود ۱۰۰ کیلو وات الکتریسیته به وسیلهٔ یک رآکتور هسته‌ای در نیروگاه رآکتور آزمایشگاهی بریدر ۱ نزدیک آرکو، ایداهو تولید شد. همچنین در ایالات متحده، با تست یک رآکتور توسعه یافته در ۱۹۵۳، تحقیقاتی بر روی نیرو محرکه هستهای دریایی صورت گرفت. در سال ۱۹۵۳، رئیس جمهور وقت ایالات متحده، دوایت آیزنهاور سخنرانی خود را با موضوع اتم برای صلح، با تاکید بر نیاز فوری به توسعهٔ استفادهٔ صلح آمیز از انرژی هسته‌ای، در سازمان ملل ارائه کرد. این موضوع با اصلاحات فعالیت انرژی اتمی در ۱۹۵۴ ادامه یافت و سبب ساختار شکنی سریع تکنولوژی رآکتور ایالات متحده و توسعهٔ بخش خصوصی شد.

نیروگاه انرژی هسته‌ای[ویرایش]

پرونده:PWR nuclear power plant animation.ogv
 
پویا نمایی یک رآکتور آب فشرده در حال عملیات.
 
برخلاف نیروگاه‌های سوخت فسیلی تنها ماده‌ای که برج‌های خنک‌کننده‌ی نیروگاه‌های هسته‌ای را ترک می کند، بخار آب است و بنابرین سبب آلودگی هوا یا گرمایش زمین نمی‌شود.

همانطور که اکثر نیروگاههای حرارتی با مهار انرژی حرارتی آزاد شده از سوخت‌های فسیلیبرق تولید می کنند، نیروگاه‌های انرژی هسته‌ای نیز انرژی آزاد شده از هسته ی اتم ها در فرایند شکافت هسته‌ای درون رآکتور هسته‌ای را مورد استفاده قرار می دهند. گرمای هسته ی رآکتور، به وسیله ی یک سیستم سرمایشی دفع می شود و با استفاده از این گرما، توربین بخار متصل به ژنراتور، به منظور تولید الکتریسیته به حرکت در می آید.

 

 


برچسب ها : انرژی اتمي


صفحه قبل 1 2 3 4 5 ... 6 صفحه بعد