انرژی هسته ای
منوی اصلی
مطالب پیشین
وصیت شهدا
وصیت شهدا
لینک دوستان
پیوندهای روزانه
نویسندگان
درباره

به وب سايت ما خوش آمدید
جستجو


آرشیو مطالب
لوگوی دوستان

ابزار و قالب وبلاگ

کاربردی

نام :
وب :
پیام :
2+2=:
(Refresh)

خبرنامه وب سایت:





آمار وب سایت:  

بازدید امروز :
بازدید دیروز :
بازدید هفته :
بازدید ماه :
بازدید کل :
تعداد مطالب : 41
تعداد نظرات : 0
تعداد آنلاین : 1

ابر برچسب ها
ارسال شده در سه شنبه 28 بهمن 1396 ساعت 21:23 توسط (( میلاد بیات ))

 غنی سازی:  
هدف از غنی سازی توليد اورانيومی است که دارای درصد بالايی از ايزوتوپ U۲۳۵ باشد.
اورانيوم مورد استفاده در راکتورهای اتمی بايد به حدی غنی شود که حاوی ۲ تا ۳ درصد اورانيوم ۲۳۵ باشد، در حالی که اورانيومی که در ساخت بمب اتمی بکار ميرود حداقل بايد حاوی ۹۰ درصد اورانيوم ۲۳۵ باشد.
يکی از روشهای معمول غنی سازی استفاده از دستگاههای سانتريفوژ گاز است.
سانتريفوژ از اتاقکی سيلندری شکل تشکيل شده که با سرعت بسيار زياد حول محور خود می چرخد. هنگامی که گاز هگزا فلوئوريد اورانيوم به داخل اين سيلندر دميده شود نيروی گريز از مرکز ناشی از چرخش آن باعث ميشود که مولکولهای سبکتری که حاوی اورانيوم ۲۳۵ است در مرکز سيلندر متمرکز شوند و مولکولهای سنگينتری که حاوی اورانيوم ۲۳۸ هستند در پايين سيلندر انباشته شوند.

در باره انرژی هسته ای بیشتر بدانیم

کيک زرد دارای خاصيت راديو اکتيويته است و ۶۰ تا ۷۰ درصد آنرا اورانيوم تشکيل ميدهد
هگزافلوئوريد اورانيوم که در صنعت با نام ساده هگز شناخته ميشود ماده شيميائی خورنده ايست که بايد آنرا با احتياط نگهداری و جابجا کرد. به همين دليل پمپها و لوله هائی که برای انتقال اين گاز در تاسيسات فراوری اورانيوم بکار ميروند بايد از آلومينيوم و آلياژهای نيکل ساخته شوند. همچنين به منظور پيشگيری از هرگونه واکنش شيميايی برگشت ناپذير
ورانيوم ۲۳۵ غنی شده ای که از اين طريق بدست می آيد سپس به داخلاخل سانتريفوژ ديگری دميده ميشود تا درجه خلوص آن باز هم بالاتر رود. اين عمل بارها و بارها توسط سانتريفوژهای متعددی که بطور سری به يکديگر متصل ميشوند تکرار ميشود تا جايی که اورانيوم ۲۳۵ با درصد خلوص مورد نياز بدست آيد.
آنچه که پس از جدا سازی اورانيوم ۲۳۵ باقی ميماند به نام اورانيوم خالی يا فقير شده شناخته ميشود که اساسا از اورانيوم ۲۳۸ تشکيل يافته است. اورانيوم خالی فلز بسيار سنگينی است که اندکی خاصيت راديو اکتيويته دارد و از آن برای ساخت گلوله های توپ ضد زره پوش و اجزای برخی جنگ افزار های ديگر از جمله منعکس کننده نوترونی در بمب اتمی استفاده ميشود.
يک شيوه ديگر غنی سازی روشی موسوم به ديفيوژن يا روش انتشاری است.
دراين روش گاز هگزافلوئوريد اورانيوم به داخل ستونهايی که جدار آنها از اجسام متخلخل تشکيل شده دميده ميشود. سوراخهای موجود در جسم متخلخل بايد قدری از قطر مولکول هگزافلوئوريد اورانيوم بزرگتر باشد.
در نتيجه اين کار مولکولهای سبکتر حاوی اورانيوم ۲۳۵ با سرعت بيشتری در اين ستونها منتشر شده و تفکيک ميشوند. اين روش غنی سازی نيز بايد مانند روش سانتريفوژ بارها و باره تکرار شود.



برچسب ها : غنی سازی
ارسال شده در سه شنبه 28 بهمن 1396 ساعت 21:22 توسط (( میلاد بیات ))

 استخراج اورانيوم از معدن  
اورانيوم که ماده خام اصلی مورد نياز برای توليد انرژی در برنامه های صلح آميز يا نظامی هسته ای است، از طريق استخراج از معادن زيرزمينی يا سر باز بدست می آيد. اگر چه اين عنصر بطور طبيعی در سرتاسر جهان يافت ميشود اما تنها حجم کوچکی از آن بصورت متراکم در معادن موجود است.
هنگامی که هسته اتم اورانيوم در يک واکنش زنجيره ای شکافته شود مقداری انرژی آزاد خواهد شد.
برای شکافت هسته اتم اورانيوم، يک نوترون به هسته آن شليک ميشود و در نتيجه اين فرايند، اتم مذکور به دو اتم کوچکتر تجزيه شده و تعدادی نوترون جديد نيز آزاد ميشود که هرکدام به نوبه خود ميتوانند هسته های جديدی را در يک فرايند زنجيره ای تجزيه کنند.

در باره انرژی هسته ای بیشتر بدانیم

جموع جرم اتمهای کوچکتری که از تجزيه اتم اورانيوم بدست می آيد ازز کل جرم اوليه اين اتم کمتر است و اين بدان معناست که مقداری از جرم اوليه که ظاهرا ناپديد شده در واقع به انرژی تبديل شده است، و اين انرژی با استفاده از رابطه E=MC۲ يعنی رابطه جرم و انرژی که آلبرت اينشتين نخستين بار آنرا کشف کرد قابل محاسبه است.
اورانيوم به صورت دو ايزوتوپ مختلف در طبيعت يافت ميشود. يعنی اورانيوم U۲۳۵ يا U۲۳۸ که هر دو دارای تعداد پروتون يکسانی بوده و تنها تفاوتشان در سه نوترون اضافه ای است که در هسته U۲۳۸ وجود دارد. اعداد ۲۳۵ و ۲۳۸ بيانگر مجموع تعداد پروتونها و نوترونها در هسته هر کدام از اين دو ايزوتوپ است.




برچسب ها : استخراج اورانيوم از معدن
ارسال شده در سه شنبه 28 بهمن 1396 ساعت 21:22 توسط (( میلاد بیات ))

 کشورهای اصلی توليد کننده اورانيوم  
استراليا
چين
کانادا
قزاقستان
ناميبيا
نيجر
روسيه
ازبکستان
برای بدست آوردن بالاترين بازدهی در فرايند زنجيره ای شکافت هسته بايد از اورانيوم ۲۳۵ استفاده کرد که هسته آن به سادگی شکافته ميشود. هنگامی که اين نوع اورانيوم به اتمهای کوچکتر تجزيه ميشود علاوه بر آزاد شدن مقداری انرژی حرارتی دو يا سه نوترون جديد نيز رها ميشود که در صورت برخورد با اتمهای جديد اورانيوم بازهم انرژی حرارتی بيشتر و نوترونهای جديد آزاد ميشود.
اما بدليل "نيمه عمر" کوتاه اورانيوم ۲۳۵ و فروپاشی سريع آن، اين ايزوتوپ در طبيعت بسيار نادر است بطوری که از هر ۱۰۰۰ اتم اورانيوم موجود در طبيعت تنها هفت اتم از نوع U۲۳۵ بوده و مابقی از نوع سنگينتر U۲۳۸ است.
فراوری:
سنگ معدن اورانيوم بعد از استخراج، در آسيابهائی خرد و به گردی نرم تبديل ميشود. گرد بدست آمده سپس در يک فرايند شيميائی به ماده جامد زرد رنگی تبديل ميشود که به کيک زرد موسوم است. کيک زرد دارای خاصيت راديو اکتيويته است و ۶۰ تا ۷۰ درصد آنرا اورانيوم تشکيل ميدهد.
دانشمندان هسته ای برای دست يابی هرچه بيشتر به ايزوتوپ نادر U۲۳۵ که در توليد انرژی هسته ای نقشی کليدی دارد، از روشی موسوم به غنی سازی استفاده می کنند. برای اين کار، دانشمندان ابتدا کيک زرد را طی فرايندی شيميائی به ماده جامدی به نام هگزافلوئوريد اورانيوم تبديل ميکنند که بعد از حرارت داده شدن در دمای حدود ۶۴ درجه سانتيگراد به گاز تبديل ميشود.

در باره انرژی هسته ای بیشتر بدانیم

بايد اين گاز را دور از معرض روغن و مواد چرب کننده ديگر نگهداری کرد.



برچسب ها : کشورهای اصلی توليد کننده اورانيوم
ارسال شده در سه شنبه 28 بهمن 1396 ساعت 21:21 توسط (( میلاد بیات ))

 غنی سازی اورانيم  
سنگ معدن اورانيوم موجود در طبيعت از دو ايزوتوپ ۲۳۵ به مقدار ۷/۰ درصد و اورانيوم ۲۳۸ به مقدار ۳/۹۹ درصد تشكيل شده است. سنگ معدن را ابتدا در اسيد حل كرده و بعد از تخليص فلز، اورانيوم را به صورت تركيب با اتم فلئور (F) و به صورت مولكول اورانيوم هكزا فلورايد UF6 تبديل مي كنند كه به حالت گازي است. سرعت متوسط مولكول هاي گازي با جرم مولكولي گاز نسبت عكس دارد اين پديده را گراهان در سال ۱۸۶۴ كشف كرد. از اين پديده كه به نام ديفوزيون گازي مشهور است براي غني سازي اورانيوم استفاده مي كنند.در عمل اورانيوم هكزا فلورايد طبيعي گازي شكل را از ستون هايي كه جدار آنها از اجسام متخلخل (خلل و فرج دار) درست شده است عبور مي دهند. منافذ موجود در جسم متخلخل بايد قدري بيشتر از شعاع اتمي يعني در حدود ۵/۲ انگشترم (۰۰۰۰۰۰۰۲۵/۰ سانتيمتر) باشد. ضريب جداسازي متناسب با اختلاف جرم مولكول ها است.روش غني سازي اورانيوم تقريباً مطابق همين اصولي است كه در اينجا گفته شد. با وجود اين مي توان به خوبي حدس زد كه پرخرج ترين مرحله تهيه سوخت اتمي همين مرحله غني سازي ايزوتوپ ها است زيرا از هر هزاران كيلو سنگ معدن اورانيوم ۱۴۰ كيلوگرم اورانيوم طبيعي به دست مي آيد كه فقط يك كيلوگرم اورانيوم ۲۳۵ خالص در آن وجود دارد. براي تهيه و تغليظ اورانيوم تا حد ۵ درصد حداقل ۲۰۰۰ برج از اجسام خلل و فرج دار با ابعاد نسبتاً بزرگ و پي درپي لازم است تا نسبت ايزوتوپ ها تا از برخي به برج ديگر به مقدار ۰۱/۰ درصد تغيير پيدا كند. در نهايت موقعي كه نسبت اورانيوم ۲۳۵ به اورانيوم ۲۳۸ به ۵ درصد رسيد بايد براي تخليص كامل از سانتريفوژهاي بسيار قوي استفاده نمود. براي ساختن نيروگاه اتمي، اورانيوم طبيعي و يا اورانيوم غني شده بين ۱ تا ۵ درصد كافي است. ولي براي تهيه بمب اتمي حداقل ۵ تا ۶ كيلوگرم اورانيوم ۲۳۵ صددرصد خالص نياز است. عملا در صنايع نظامي از اين روش استفاده نمي شود و بمب هاي اتمي را از پلوتونيوم ۲۳۹ كه سنتز و تخليص شيميايي آن بسيار ساده تر است تهيه مي كنند. عنصر اخير را در نيروگاه هاي بسيار قوي مي سازند كه تعداد نوترون هاي موجود در آنها از صدها هزار ميليارد نوترون در ثانيه در سانتيمتر مربع تجاوز مي كند. عملاً كليه بمب هاي اتمي موجود در زراد خانه هاي جهان از اين عنصر درست مي شود.روش ساخت اين عنصر در داخل نيروگاه هاي اتمي به صورت زير است: ايزوتوپ هاي اورانيوم ۲۳۸ شكست پذير نيستند ولي جاذب نوترون كم انرژي (نوترون حرارتي هستند. تعدادي از نوترون هاي حاصل از شكست اورانيوم ۲۳۵ را جذب مي كنند و تبديل به اورانيوم ۲۳۹ مي شوند. اين ايزوتوپ از اورانيوم بسيار ناپايدار است و در كمتر از ده ساعت تمام اتم هاي به وجود آمده تخريب مي شوند. در درون هسته پايدار اورانيوم ۲۳۹ يكي از نوترون ها خودبه خود به پروتون و يك الكترون تبديل مي شود.بنابراين تعداد پروتون ها يكي اضافه شده و عنصر جديد را كه ۹۳ پروتون دارد نپتونيم مي نامند كه اين عنصر نيز ناپايدار است و يكي از نوترون هاي آن خود به خود به پروتون تبديل مي شود و در نتيجه به تعداد پروتون ها يكي اضافه شده و عنصر جديد كه ۹۴ پروتون دارد را پلوتونيم مي نامند. اين تجربه طي چندين روز انجام مي گيرد.
چرخه سوخت هسته ای از استخراج اورانيوم تا توليد انرژی

در باره انرژی هسته ای بیشتر بدانیم

 


برچسب ها : غنی سازی اورانيم
ارسال شده در سه شنبه 28 بهمن 1396 ساعت 21:20 توسط (( میلاد بیات ))

 ساختار نيروگاه اتمي  
به طور خلاصه چگونگي كاركرد نيروگاه هاي اتمي را بيان كرده و ساختمان دروني آنها را مورد بررسي قرار مي دهيم.
طي سال هاي گذشته اغلب كشورها به استفاده از اين نوع انرژي هسته اي تمايل داشتند و حتي دولت ايران ۱۵ نيروگاه اتمي به كشورهاي آمريكا، فرانسه و آلمان سفارش داده بود. ولي خوشبختانه بعد از وقوع دو حادثه مهم تري ميل آيلند (Three Mile Island) در ۲۸ مارس ۱۹۷۹ و فاجعه چرنوبيل (Tchernobyl) در روسيه در ۲۶ آوريل ۱۹۸۶، نظر افكار عمومي نسبت به كاربرد اتم براي توليد انرژي تغيير كرد و ترس و وحشت از جنگ اتمي و به خصوص امكان تهيه بمب اتمي در جهان سوم، كشورهاي غربي را موقتاً مجبور به تجديدنظر در برنامه هاي اتمي خود كرد.
نيروگاه اتمي در واقع يك بمب اتمي است كه به كمك ميله هاي مهاركننده و خروج دماي دروني به وسيله مواد خنك كننده مثل آب و گاز، تحت كنترل درآمده است. اگر روزي اين ميله ها و يا پمپ هاي انتقال دهنده مواد خنك كننده وظيفه خود را درست انجام ندهند، سوانح متعددي به وجود مي آيد و حتي ممكن است نيروگاه نيز منفجر شود، مانند فاجعه نيروگاه چرنوبيل شوروي. يك نيروگاه اتمي متشكل از مواد مختلفي است كه همه آنها نقش اساسي و مهم در تعادل و ادامه حيات آن را دارند. اين مواد عبارت اند از:
۱ _ ماده سوخت متشكل از اورانيوم طبيعي، اورانيوم غني شده، اورانيوم و پلوتونيم است.
عمل سوختن اورانيوم در داخل نيروگاه اتمي متفاوت از سوختن زغال يا هر نوع سوخت فسيلي ديگر است. در اين پديده با ورود يك نوترون كم انرژي به داخل هسته ايزوتوپ اورانيوم ۲۳۵ عمل شكست انجام مي گيرد و انرژي فراواني توليد مي كند. بعد از ورود نوترون به درون هسته اتم، ناپايداري در هسته به وجود آمده و بعد از لحظه بسيار كوتاهي هسته اتم شكسته شده و تبديل به دوتكه شكست و تعدادي نوترون مي شود. تعداد متوسط نوترون ها به ازاي هر ۱۰۰ اتم شكسته شده ۲۴۷ عدد است و اين نوترون ها اتم هاي ديگر را مي شكنند و اگر كنترلي در مهار كردن تعداد آنها نباشد واكنش شكست در داخل توده اورانيوم به صورت زنجيره اي انجام مي شود كه در زماني بسيار كوتاه منجر به انفجار شديدي خواهد شد.
در واقع ورود نوترون به درون هسته اتم اورانيوم و شكسته شدن آن توام با انتشار انرژي معادل با ۲۰۰ ميليون الكترون ولت است اين مقدار انرژي در سطح اتمي بسيار ناچيز ولي در مورد يك گرم از اورانيوم در حدود صدها هزار مگاوات است. كه اگر به صورت زنجيره اي انجام شود، در كمتر از هزارم ثانيه مشابه بمب اتمي عمل خواهد كرد.
اما اگر تعداد شكست ها را در توده اورانيوم و طي زمان محدود كرده به نحوي كه به ازاي هر شكست، اتم بعدي شكست حاصل كند شرايط يك نيروگاه اتمي به وجود مي آيد. به عنوان مثال نيروگاهي كه داراي ۱۰ تن اورانيوم طبيعي است قدرتي معادل با ۱۰۰ مگاوات خواهد داشت و به طور متوسط ۱۰۵ گرم اورانيوم ۲۳۵ در روز در اين نيروگاه شكسته مي شود و همان طور كه قبلاً گفته شد در اثر جذب نوترون به وسيله ايزوتوپ اورانيوم ۲۳۸ اورانيوم ۲۳۹ به وجود مي آمد كه بعد از دو بار انتشار پرتوهاي بتا (يا الكترون) به پلوتونيم ۲۳۹ تبديل مي شود كه خود مانند اورانيوم ۲۳۵ شكست پذير است. در اين عمل ۷۰ گرم پلوتونيم حاصل مي شود. ولي اگر نيروگاه سورژنراتور باشد و تعداد نوترون هاي موجود در نيروگاه زياد باشند مقدار جذب به مراتب بيشتر از اين خواهد بودو مقدار پلوتونيم هاي به وجود آمده از مقدار آنهايي كه شكسته مي شوند بيشتر خواهند بود. در چنين حالتي بعد از پياده كردن ميله هاي سوخت مي توان پلوتونيم به وجود آمده را از اورانيوم و فرآورده هاي شكست را به كمك واكنش هاي شيميايي بسيار ساده جدا و به منظور تهيه بمب اتمي ذخيره كرد.
۲ _ نرم كننده ها موادي هستند كه برخورد نوترون هاي حاصل از شكست با آنها الزامي است و براي كم كردن انرژي اين نوترون ها به كار مي روند. زيرا احتمال واكنش شكست پي در پي به ازاي نوترون هاي كم انرژي بيشتر مي شود. آب سنگين (D2O) يا زغال سنگ (گرافيت) به عنوان نرم كننده نوترون به كار برده مي شوند.
۳ _ ميله هاي مهاركننده: اين ميله ها از مواد جاذب نوترون درست شده اند و وجود آنها در داخل رآكتور اتمي الزامي است و مانع افزايش ناگهاني تعداد نوترون ها در قلب رآكتور مي شوند. اگر اين ميله ها كار اصلي خود را انجام ندهند، در زماني كمتر از چند هزارم ثانيه قدرت رآكتور چند برابر شده و حالت انفجاري يا ديورژانس رآكتور پيش مي آيد. اين ميله ها مي توانند از جنس عنصر كادميم و يا بور باشند.
۴ _ مواد خنك كننده يا انتقال دهنده انرژي حرارتي: اين مواد انرژي حاصل از شكست اورانيوم را به خارج از رآكتور انتقال داده و توربين هاي مولد برق را به حركت در مي آورند و پس از خنك شدن مجدداً به داخل رآكتور برمي گردند. البته مواد در مدار بسته و محدودي عمل مي كنند و با خارج از محيط رآكتور تماسي ندارند. اين مواد مي توانند گاز CO2 ، آب، آب سنگين، هليم گازي و يا سديم مذاب باشند.



برچسب ها : ساختار نيروگاه اتمي
ارسال شده در سه شنبه 28 بهمن 1396 ساعت 21:20 توسط (( میلاد بیات ))

 ساختار نيروگاه اتمي  
به طور خلاصه چگونگي كاركرد نيروگاه هاي اتمي را بيان كرده و ساختمان دروني آنها را مورد بررسي قرار مي دهيم.
طي سال هاي گذشته اغلب كشورها به استفاده از اين نوع انرژي هسته اي تمايل داشتند و حتي دولت ايران ۱۵ نيروگاه اتمي به كشورهاي آمريكا، فرانسه و آلمان سفارش داده بود. ولي خوشبختانه بعد از وقوع دو حادثه مهم تري ميل آيلند (Three Mile Island) در ۲۸ مارس ۱۹۷۹ و فاجعه چرنوبيل (Tchernobyl) در روسيه در ۲۶ آوريل ۱۹۸۶، نظر افكار عمومي نسبت به كاربرد اتم براي توليد انرژي تغيير كرد و ترس و وحشت از جنگ اتمي و به خصوص امكان تهيه بمب اتمي در جهان سوم، كشورهاي غربي را موقتاً مجبور به تجديدنظر در برنامه هاي اتمي خود كرد.
نيروگاه اتمي در واقع يك بمب اتمي است كه به كمك ميله هاي مهاركننده و خروج دماي دروني به وسيله مواد خنك كننده مثل آب و گاز، تحت كنترل درآمده است. اگر روزي اين ميله ها و يا پمپ هاي انتقال دهنده مواد خنك كننده وظيفه خود را درست انجام ندهند، سوانح متعددي به وجود مي آيد و حتي ممكن است نيروگاه نيز منفجر شود، مانند فاجعه نيروگاه چرنوبيل شوروي. يك نيروگاه اتمي متشكل از مواد مختلفي است كه همه آنها نقش اساسي و مهم در تعادل و ادامه حيات آن را دارند. اين مواد عبارت اند از:
۱ _ ماده سوخت متشكل از اورانيوم طبيعي، اورانيوم غني شده، اورانيوم و پلوتونيم است.
عمل سوختن اورانيوم در داخل نيروگاه اتمي متفاوت از سوختن زغال يا هر نوع سوخت فسيلي ديگر است. در اين پديده با ورود يك نوترون كم انرژي به داخل هسته ايزوتوپ اورانيوم ۲۳۵ عمل شكست انجام مي گيرد و انرژي فراواني توليد مي كند. بعد از ورود نوترون به درون هسته اتم، ناپايداري در هسته به وجود آمده و بعد از لحظه بسيار كوتاهي هسته اتم شكسته شده و تبديل به دوتكه شكست و تعدادي نوترون مي شود. تعداد متوسط نوترون ها به ازاي هر ۱۰۰ اتم شكسته شده ۲۴۷ عدد است و اين نوترون ها اتم هاي ديگر را مي شكنند و اگر كنترلي در مهار كردن تعداد آنها نباشد واكنش شكست در داخل توده اورانيوم به صورت زنجيره اي انجام مي شود كه در زماني بسيار كوتاه منجر به انفجار شديدي خواهد شد.
در واقع ورود نوترون به درون هسته اتم اورانيوم و شكسته شدن آن توام با انتشار انرژي معادل با ۲۰۰ ميليون الكترون ولت است اين مقدار انرژي در سطح اتمي بسيار ناچيز ولي در مورد يك گرم از اورانيوم در حدود صدها هزار مگاوات است. كه اگر به صورت زنجيره اي انجام شود، در كمتر از هزارم ثانيه مشابه بمب اتمي عمل خواهد كرد.
اما اگر تعداد شكست ها را در توده اورانيوم و طي زمان محدود كرده به نحوي كه به ازاي هر شكست، اتم بعدي شكست حاصل كند شرايط يك نيروگاه اتمي به وجود مي آيد. به عنوان مثال نيروگاهي كه داراي ۱۰ تن اورانيوم طبيعي است قدرتي معادل با ۱۰۰ مگاوات خواهد داشت و به طور متوسط ۱۰۵ گرم اورانيوم ۲۳۵ در روز در اين نيروگاه شكسته مي شود و همان طور كه قبلاً گفته شد در اثر جذب نوترون به وسيله ايزوتوپ اورانيوم ۲۳۸ اورانيوم ۲۳۹ به وجود مي آمد كه بعد از دو بار انتشار پرتوهاي بتا (يا الكترون) به پلوتونيم ۲۳۹ تبديل مي شود كه خود مانند اورانيوم ۲۳۵ شكست پذير است. در اين عمل ۷۰ گرم پلوتونيم حاصل مي شود. ولي اگر نيروگاه سورژنراتور باشد و تعداد نوترون هاي موجود در نيروگاه زياد باشند مقدار جذب به مراتب بيشتر از اين خواهد بودو مقدار پلوتونيم هاي به وجود آمده از مقدار آنهايي كه شكسته مي شوند بيشتر خواهند بود. در چنين حالتي بعد از پياده كردن ميله هاي سوخت مي توان پلوتونيم به وجود آمده را از اورانيوم و فرآورده هاي شكست را به كمك واكنش هاي شيميايي بسيار ساده جدا و به منظور تهيه بمب اتمي ذخيره كرد.
۲ _ نرم كننده ها موادي هستند كه برخورد نوترون هاي حاصل از شكست با آنها الزامي است و براي كم كردن انرژي اين نوترون ها به كار مي روند. زيرا احتمال واكنش شكست پي در پي به ازاي نوترون هاي كم انرژي بيشتر مي شود. آب سنگين (D2O) يا زغال سنگ (گرافيت) به عنوان نرم كننده نوترون به كار برده مي شوند.
۳ _ ميله هاي مهاركننده: اين ميله ها از مواد جاذب نوترون درست شده اند و وجود آنها در داخل رآكتور اتمي الزامي است و مانع افزايش ناگهاني تعداد نوترون ها در قلب رآكتور مي شوند. اگر اين ميله ها كار اصلي خود را انجام ندهند، در زماني كمتر از چند هزارم ثانيه قدرت رآكتور چند برابر شده و حالت انفجاري يا ديورژانس رآكتور پيش مي آيد. اين ميله ها مي توانند از جنس عنصر كادميم و يا بور باشند.
۴ _ مواد خنك كننده يا انتقال دهنده انرژي حرارتي: اين مواد انرژي حاصل از شكست اورانيوم را به خارج از رآكتور انتقال داده و توربين هاي مولد برق را به حركت در مي آورند و پس از خنك شدن مجدداً به داخل رآكتور برمي گردند. البته مواد در مدار بسته و محدودي عمل مي كنند و با خارج از محيط رآكتور تماسي ندارند. اين مواد مي توانند گاز CO2 ، آب، آب سنگين، هليم گازي و يا سديم مذاب باشند.



برچسب ها : ساختار نيروگاه اتمي
ارسال شده در سه شنبه 28 بهمن 1396 ساعت 21:18 توسط (( میلاد بیات ))

 ايزوتوپ هاي اورانيوم  
تعداد نوترون ها در اتم هاي مختلف يك عنصر همواره يكسان نيست كه براي مشخص كردن آنها از كلمه ايزوتوپ استفاده مي شود.
بنابراين اتم هاي مختلف يك عنصر را ايزوتوپ مي گويند. مثلاً عنصر هيدروژن سه ايزوتوپ دارد: هيدروژن معمولي كه فقط يك پروتون دارد و فاقد نوترون است. هيدروژن سنگين يك پروتون و يك نوترون دارد كه به آن دوتريم گويند و نهايتاً تريتيم كه از دو نوترون و يك پروتون تشكيل شده و ناپايدار است و طي زمان تجزيه مي شود.
ايزوتوپ سنگين هيدروژن يعني دوتريم در نيروگاه هاي اتمي كاربرد دارد و از الكتروليز آب به دست مي آيد. در جنگ دوم جهاني آلماني ها براي ساختن نيروگاه اتمي و تهيه بمب اتمي در سوئد و نروژ مقادير بسيار زيادي آب سنگين تهيه كرده بودند كه انگليسي ها متوجه منظور آلماني ها شده و مخازن و دستگاه هاي الكتروليز آنها را نابود كردند.
غالب عناصر ايزوتوپ دارند از آن جمله عنصر اورانيوم، چهار ايزوتوپ دارد كه فقط دو ايزوتوپ آن به علت داشتن نيمه عمر نسبتاً بالا در طبيعت و در سنگ معدن يافت مي شوند. اين دو ايزوتوپ عبارتند از اورانيوم ۲۳۵ و اورانيوم ۲۳۸ كه در هر دو ۹۲ پروتون وجود دارد ولي اولي ۱۴۳ و دومي ۱۴۶ نوترون دارد. اختلاف اين دو فقط وجود ۳ نوترون اضافي در ايزوتوپ سنگين است ولي از نظر خواص شيميايي اين دو ايزوتوپ كاملاً يكسان هستند و براي جداسازي آنها از يكديگر حتماً بايد از خواص فيزيكي آنها يعني اختلاف جرم ايزوتوپ ها استفاده كرد. ايزوتوپ اورانيوم ۲۳۵ شكست پذير است و در نيروگاه هاي اتمي از اين خاصيت استفاده مي شود و حرارت ايجاد شده در اثر اين شكست را تبديل به انرژي الكتريكي مي نمايند. در واقع ورود يك نوترون به درون هسته اين اتم سبب شكست آن شده و به ازاي هر اتم شكسته شده ۲۰۰ ميليون الكترون ولت انرژي و دو تكه شكست و تعدادي نوترون حاصل مي شود كه مي توانند اتم هاي ديگر را بشكنند. بنابراين در برخي از نيروگاه ها ترجيح مي دهند تا حدي اين ايزوتوپ را در مخلوط طبيعي دو ايزوتوپ غني كنند و بدين ترتيب مسئله غني سازي اورانيوم مطرح مي شود.



برچسب ها : ايزوتوپ هاي اورانيوم


صفحه قبل 1 2 3 4 5 ... 6 صفحه بعد